期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
The Surface Groups and Active Site of Fibrous Mineral Materials
1
作者 董发勤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第3期94-97,共4页
The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid a... The exposed and transformed groups of fibrous brucite,wollastonite,chrysotile asbestos,sepiolite,palygorskite,clinoptilolite,crocidolite and diatomaceous earth mineral materials are analyzed by IR spectra after acid and alikali etching,strong mechanical and polarity molecular interaction.The results show the active sites concentrate on the ends in stick mineral materials and on the defect or hole edge in pipe mineral materials.The inside active site of mineral materials plays a main role in small molecular substance.The shape of minerals influence their distribution and density of active site.The strong mechanical impulsion and weak chemical force change the active site feature of minerals,the powder process enables minerals exposed more surface group and more combined types.The surface processing with the small polarity molecular or the brand of middle molecular may produce ionation and new coordinate bond,and change the active properties and level of original mineral materials. 展开更多
关键词 fibrous minerals surface groups active site
在线阅读 下载PDF
MXene-Based Quantum Dots Optimize Hydrogen Production via Spontaneous Evolution of Cl-to O-Terminated Surface Groups
2
作者 Yuhua Liu Xiaoyu Zhang +5 位作者 Wei Zhang Xin Ge Yan Wang Xu Zou Xinyan Zhou Weitao Zheng 《Energy & Environmental Materials》 SCIE EI CAS 2023年第6期251-258,共8页
MXene quantum dots(MQDs)offer wide applications owing to the abundant surface chemistry,tunable energy-level structure,and unique properties.However,the application of MQDs in electrochemical energy conversion,includi... MXene quantum dots(MQDs)offer wide applications owing to the abundant surface chemistry,tunable energy-level structure,and unique properties.However,the application of MQDs in electrochemical energy conversion,including hydrogen evolution reaction(HER),remains to be realized,as it remains a challenge to precisely control the types of surface groups and tune the structure of energy levels in MQDs,owing to the high surface energy-induced strong agglomeration in post-processing.Consequently,the determination of the exact catalytically active sites and processes involved in such an electrocatalysis is challenging because of the complexity of the synthetic process and reaction conditions.Herein,we demonstrated the spontaneous evolution of the surface groups of the Ti_(2)CT_(x)MQDs(x:the content of O atom),i.e.,replacement of the-Cl functional groups by O-terminated ones during the cathode reaction.This process resulted in a low Gibbs free energy(0.26 eV)in HER.Our steady Ti_(2)CO_(x)/Cu_(2)O/Cu foam systems exhibited a low overpotential of 175 mV at 10 mA cm^(-2)in 1 M aq.KOH,and excellent operational stability over 165 h at a constant current density of-10 mA cm^(-2). 展开更多
关键词 HF free hydrogen evolution MXene quantum dots surface group
在线阅读 下载PDF
Fixed Subgroups are not Compressed in Direct Products of Surface Groups
3
作者 Qiang ZHANG Jianchun WU Fanling GU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2024年第5期703-708,共6页
By constructing counterexamples,the authors show that the fixed subgroups are not compressed in direct products of free and surface groups,and hence negate a conjecture in[Zhang,Q.,Ventura,E.and J.Wu,Fixed subgroups a... By constructing counterexamples,the authors show that the fixed subgroups are not compressed in direct products of free and surface groups,and hence negate a conjecture in[Zhang,Q.,Ventura,E.and J.Wu,Fixed subgroups are compressed in surface groups,Internat.J.Algebra Comput.,25,2015,865–887]. 展开更多
关键词 Fixed subgroup Free group surface group Direct product INERTIA Compression
原文传递
Role of biochar surface characteristics in the adsorption of aromatic compounds:Pore structure and functional groups 被引量:15
4
作者 Xue-Fei Tan Shi-Shu Zhu +4 位作者 Ru-Peng Wang Yi-Di Chen Pau-Loke Show Feng-Fa Zhang Shih-Hsin Ho 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期2939-2946,共8页
Biochar(BC)are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation,wide availability,and high sustainability.The surface properties of BCs usually vary... Biochar(BC)are widely used as highly efficient adsorbents to alleviate aromatics-based contaminants due to their ease of preparation,wide availability,and high sustainability.The surface properties of BCs usually vary greatly due to their complex chemical constituents and different preparation processes and are reflected in the values of parameters such as the specific surface area(SSA),pore volume/size,and surface functional groups(SFGs).The effects of SSA and pore volume/size on the adsorption of aromatics have been widely reported.However,the corresponding mechanisms of BC SFGs towards aromatics adsorption remains unclear as the compositions of the SFGs are usually complex and hard to determine.To address in this gap in the literature,this review introduces a new perspective on the adsorption mechanisms of aromatics.Through collecting previously-reported results,the parameters log P(logarithm of the Kow),polar surface area,and the positive/negative charges were carefully calculated using Chem Draw3D,which allowed the hydrophobicity/hydrophilicity properties,electron donor-acceptor interactions,Hbonding,and electrostatic interactions between SFGs and aromatics-based contaminates to be inferred intuitively.These predictions were consistent with the reported results and showed that tailor-made BCs can be designed according to the molecular weights,chemical structures,and polarities of the target aromatics.Overall,this review provides new insight into predicting the physicochemical properties of BCs through revealing the relationship between SFGs and adsorbates,which may provide useful guidance for the preparing of highly-efficient,functional BCs for the adsorption of aromatics. 展开更多
关键词 BIOCHAR surface characteristics AROMATICS ADSORPTION surface functional groups
原文传递
Effect of acidic surface functional groups on Cr(Ⅵ) removal by activated carbon from aqueous solution 被引量:9
5
作者 ZHOU Hualei CHEN Yunfa 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期333-338,共6页
The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and a... The activated carbon with high surface area was prepared by KOH activation.It was further modified by H2SO4 and HNO3 to introduce more surface functional groups.The pore structure of the activated carbons before and after modification was analyzed based on the nitrogen adsorption isotherms.The morphology of those activated carbons was characterized using scanning electronic microscopy (SEM).The surface functional groups were determined by Fourier transform infrared spectroscopy (FTIR).The quantity of those groups was measured by the Boehm titration method.Cr(VI) removal by the activated carbons from aqueous solution was investigated at different pH values.The results show that compared with H2SO4,HNO3 destructs the original pore of the activated carbon more seriously and induces more acidic surface functional groups on the activated carbon.The pH value of the solution plays a key role in the Cr(VI) removal.The ability of reducing Cr(VI) to Cr(III) by the activated carbons is relative to the acidic surface functional groups.At higher pH values,the Cr(VI) removal ratio is improved by increasing the acidic surface functional groups of the activated carbons.At lower pH values,however,the acidic surface functional groups almost have no effect on the Cr(VI) removal by the activated carbon from aqueous solution. 展开更多
关键词 activated carbon surface functional groups REMOVAL MODIFICATION chromium(VI)
在线阅读 下载PDF
Variations in surface functional groups, carbon chemical state and graphitization degree during thermal deactivation of diesel soot particles 被引量:2
6
作者 Ye Liu Sijin Wu +3 位作者 Chenyang Fan Xin Wang Fangjie Liu Haibo Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第2期678-687,共10页
The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functio... The thermal deactivation of diesel soot particles exerts a significant influence on the control strategy for the regeneration of diesel particulate filters(DPFs).This work focused on the changes in the surface functional groups,carbon chemical state,and graphitization degree during thermal treatment in an inert gas environment at intermediate temperatures of 600℃,800℃,and 1000℃ and explore the chemical species that were desorbed from the diesel soot surface during thermal treatment using a thermogravimetric analyser coupled with a gas-chromatograph mass spectrometer(TGA-GC/MS).The surface functional groups and carbon chemical statewere characterized using Fourier transform infrared spectroscopy(FT-IR)and X-ray photoelectron spectroscopy(XPS).The graphitization degree was evaluated by means of Raman spectroscopy(RS).The concentrations of aliphatic C–H,C–OH,C=O,and O–C=O groups are reduced for diesel soot and carbon black when increasing the thermal treatment temperature,while the sp^(2)/sp^(3) hybridized ratio and graphitization degree enhance.These results provide comprehensive evidence of the decreased reactivity of soot samples.Among oxygenated functional groups,the percentage reduction during thermal treatment is the largest for the O–C=O groups owing to its worst thermodynamic stability.TGA-GC/MS results show that the aliphatic and aromatic chains and oxygenated species would be desorbed from the soot surface during 1000℃ thermal treatment of diesel soot. 展开更多
关键词 Diesel soot particles surface functional groups Carbon chemical state Graphitization degree Thermal deactivation
原文传递
States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions 被引量:1
7
作者 Zhaoyang Han Ling Sun +6 位作者 Yingying Chu Jing Wang Chenyu Wei Qianlei Jiang Changbao Han Hui Yan Xuemei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期197-208,共12页
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-... Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere. 展开更多
关键词 Stock graphene oxide surface functional groups Existence state ADSORBATES Enhanced adsorption DYES
在线阅读 下载PDF
The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeO_(x) particles 被引量:1
8
作者 Peiwei Han Chunhua Xu +5 位作者 Yamin Wang Chenglin Sun Huangzhao Wei Haibo Jin Ying Zhao Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期105-114,共10页
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th... FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO. 展开更多
关键词 Catalytic wet peroxide oxidation Fe/AC catalyst surface functional groups Reaction mechanism
在线阅读 下载PDF
Investigation into the surface active groups of coal 被引量:1
9
作者 徐精彩 薛韩玲 +2 位作者 邓军 文虎 张辛亥 《Journal of Coal Science & Engineering(China)》 2001年第1期88-96,共9页
The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical ... The oxidation heat of coal is the direct reason leading to coal spontaneous combustion. When coal is exposed in oxygen atmosphere, the physical adsorption and chemisorption happened, and then which resulting chemical reaction followed heat between coal and oxygen. Owing to the complexity and uncertain of molecular structure of coal,it was only reduced that bridge bonds, side chains and O 2 containing functional groups in coal may be prone to oxidation in last year, but not to deeply investigate into the structures and the type of the active radicals. In this paper, according to the last achievements in coal structure research, the hypomethylether bond, hypoalkyl bond of α carbon atom with hydroxyl and α carbon atom with hypomethy side chain and hypomethyl bonds linking up two aromatic hydrocarbon in bridge bonds, and methoxy,aldehyde and alkyls of α carbon atom with hydroxy in side bonds are inferred to be free radical easily to lead to oxidize coal under the ambient temperature and pressure. The order from strong to weak of oxide activation of the seven surface active groups is aldehyde side chains, hypomethylether bonds, hypoalkyl bonds of α carbon atom with hydroxyl, hypoalkyl bonds of α carbon atom with hypomethyl, hypomethyl bonds linking up two aromatic hydrocarbon,methoxy, alkyls side chains of α carbon atom with hydroxyl. Because of the two unsaturated molecular tracks of O 2, unpaired electron clouds of the part of surface active groups of coal enter molecular tracks of O 2 to lead to chemisorb on the conjugate effect and induced effect of surface active groups, and then chemical reaction followed heat happens in them. On the basis of change of bond energy, weighted average method is adopted to count the reaction heat value of each mol CO,CO 2 and H 2O. The property of coal spontaneous combustion is different for the different number and oxidability of the active structure in the coal resulting in the different oxidation heat. 展开更多
关键词 coal spontaneous combustion surface active group oxidation reaction reactive heat
在线阅读 下载PDF
Surface functional groups and redox property of modified activated carbons 被引量:1
10
作者 Zhang Xianglan Deng Shengfu +2 位作者 Liu Qiong Zhang Yan Cheng Lei 《Mining Science and Technology》 EI CAS 2011年第2期181-184,共4页
A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentr... A series of activated carbons(ACs) were prepared using HNO_3,H_2O_2 and steam as activation agents with the aim to introduce functional groups to carbon surface in the ACs preparation process.The effects of concentration of activation agent,activation time on the surface functional groups and redox property of ACs were characterized by Temperature Program Desorption(TPD) and Cyclic Voltammetry(CV).Results showed that lactone groups of ACs activated by HNO_3 increase with activation time,and the carboxyl groups increase with the concentration of HNO_3.Carbonyl/quinine groups of ACs activated by H_2O_2 increase with the activation time and the concentration of H_2O_2,although the acidic groups decrease with the concentration of H_2O_2.The redox property reflected by CV at 0 and 0.5 V is different with any kinds of oxygen functional groups characterized by TPD,but it is consistent with the SO_2 catalytic oxidization /oxidation properties indicated by TPR. 展开更多
关键词 Activated carbon surface functional groups TPD Cyclic voltammetry
在线阅读 下载PDF
Surface carboxyl groups enhance the capacities of carbonaceous oxygen electrodes for aprotic lithiumoxygen batteries: A direct observation on binder-free electrodes
11
作者 Ming Li Liang Xiao +3 位作者 Duo Wang Haoyang Dong Bohua Deng Jinping Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2328-2332,共5页
In order to achieve the high capacities of carbonaceous oxygen diffusion electrodes for aprotic lithiumoxygen batteries(Li-O2 batteries),most efforts currently focus on the design of rational porous architectures.Only... In order to achieve the high capacities of carbonaceous oxygen diffusion electrodes for aprotic lithiumoxygen batteries(Li-O2 batteries),most efforts currently focus on the design of rational porous architectures.Only few works study the surface chemistry effect that might be a critical factor influencing the capacities of carbonaceous electrodes.In addition,the surface chemistry effect is very difficult to be studied in composite electrodes due to the influences of binders and additives.Herein,we propose chemically activated carbon cloth(CACC) as an ideal model to investigate the effect of surface functional groups on the discharge capacities of carbonaceous oxygen electrodes for Li-O2 batteries.The intrinsic surface chemistry effect on the performance of carbonaceous cathode is directly observed for the first time without the influences of binders and additives.Results indicate that the surface carboxyl groups introduced by the chemical treatment not only function as the appropriate nucleation sites for Li2 O2 but also induce the formation of toroid-like Li2 O2.Thus,the surface carboxyl modification enhances the discharge capacities from 0.48 mAh/cm^2 of pristine carbon cloth to 1.23 mAh/cm^2 of CACC.This work presents an effective way to further optimize the carbonaceous oxygen electrodes via surface functional group engineering. 展开更多
关键词 surface functional group Chemically activated carbon cloth Carbonaceous oxygen electrode Specific discharge capacity Lithium-oxygen battery
原文传递
Enhancement of gaseous mercury(Hg^0) adsorption for the modified activated carbons by surface acid oxygen function groups
12
作者 GUO Si-jia GUO Gui-ping 《Journal of Groundwater Science and Engineering》 2018年第2期104-114,共11页
This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simu... This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent. 展开更多
关键词 Benzoic acid Modified activated carbon surface acid oxygen function groups Characterization Adsorption for Hg^0
在线阅读 下载PDF
IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers 被引量:1
13
作者 Li-hua TENG Tian-di TANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期720-726,共7页
In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Re... In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls. 展开更多
关键词 Carbon nanotubes (CNTs) Carbon nanofibers (CNFs) Functional surface groups Infrared (IR) spectroscopy
在线阅读 下载PDF
Correlation between Surface OH−Groups and Fractal Dimensions of Synthetic Boehmite,Goethite,and Manganite:Insights into Their Physical-Adsorbent Properties
14
作者 Francisco Granados-Correa Melania Jiménez-Reyes 《Journal of Minerals and Materials Characterization and Engineering》 2025年第4期107-122,共16页
The oxyhydroxides boehmite,goethite,and manganite were synthesized,and their structure,texture,and morphology features were determined by different analytical techniques.Content of surface hydroxyl groups and zero poi... The oxyhydroxides boehmite,goethite,and manganite were synthesized,and their structure,texture,and morphology features were determined by different analytical techniques.Content of surface hydroxyl groups and zero point of charge(pH_(zpc))were measured by potentiometry,and the surface fractal dimension(D_(f))values were obtained through adsorption-desorption N_(2) iso-therms and the Pfeifer and Cole method.The synthesized materials resulted crystalline,mesoporous,pure,and thermally stable,exhibiting high surface areas,between 188 and 413 m^(2)/g.The pH_(zpc) values were 9.2,12.4,and 2.2 and surface hydroxyl group contents were for 1.16,1.7,and 0.855 meq OH-/g,for boehmite,goethite,and manganite,respectively.Surface fractal dimensions were 1.5,1.7,and 1.4 for boehmite,goethite and manganite,respectively,de-noting relatively smooth surfaces.Surface hydroxyl group content linearly correlated with D_(f) values.Characterization of these oxyhydroxides is valuable for several physicochemical adsorption processes of contaminants present in aqueous media. 展开更多
关键词 Oxyhydroxides Synthesis Characterization surface Fractal Dimensions surface Hydroxyl groups
在线阅读 下载PDF
Synergistic Functional Group Interactions for Stable Interfacial Adhesion:Insights from Amyloid-inspired Polymers
15
作者 Jin-Wei Bai Wei Liu +4 位作者 Bin Wen Zhong-Li Lei Chen Li Hao Ren Peng Yang 《Chinese Journal of Polymer Science》 2025年第7期1096-1104,共9页
Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approa... Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria.However,the specific contributions of different functional residues remain unclear.Herein,we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl,amino,carboxyl,and hydroxyl functional groups using reversible addition-fragmentation chain transfer(RAFT)polymerization.The resulting polymers,designed with comparable molecular weights(M_(n):10–20 kDa)and narrow dispersities(PDI<1.3),mimic the diverse surface chemistry of amyloid-like proteins,enabling systematic investigation of their adhesive properties.The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy(AFM)with a colloidal probe.Remarkably copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers,a trend corroborated by macroscopic shear strength and stability tests.These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules,offering insights into protein adhesion mechanisms,and guiding polymer-based interfacial modifications. 展开更多
关键词 Protein-mimetic polymers AMYLOID Adhesion mechanism surface functional group Synergistic effect
原文传递
MXene terminating groups=O,–F or–OH,–F or=O,–OH,–F,or=O,–OH,–Cl? 被引量:4
16
作者 Tariq Bashir Sara Adeeba Ismail +3 位作者 Jiaqi Wang Wenhao Zhu Jianqing Zhao Lijun Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期90-104,I0003,共16页
MXenes are a novel family of two-dimensional(2D)materials that are fast gaining popularity due to their versatile characteristics.The surfaces of these materials are often functionalized by negatively charged terminal... MXenes are a novel family of two-dimensional(2D)materials that are fast gaining popularity due to their versatile characteristics.The surfaces of these materials are often functionalized by negatively charged terminal groups,such as=O,OH,and F during their synthesis,and it has been hypothesized that regulating the surface terminators enables to control the material characteristics.However,there is still a large gap between computational and experimental investigations regarding comprehending the surface functional groups.Surfaces with mixed terminations are consistently synthesized in experiments,although pure terminated surfaces are predicted by computational research.Here we summarized the nature of chemical bonding in transition metal carbide materials(MXenes)by1H and19F nuclear magnetic resonance(NMR),Raman,X-ray absorption near edge structure(XANES),extended X-ray absorption fine structure(EXAFS),ultraviolet photoelectron spectroscopy(UPS),X-ray photoelectron spectroscopy(XPS)/scanning transmission electron microscopy(STEM),and thermogravimetric analysis-mass spectrometry(TGA-MS)characterizations.Previous literature reveals that=O,–OH,–F,and–Cl are typical MXene surface terminators.However,recent comparative investigations on the valence band intensity distribution in MXenes reveal that the–OH cannot be considered an intrinsic termination species in MXenes.The surface terminals(=O,–OH,–F,and–Cl)of several MXenes,particularly V2CTxand Ti3C2Tx,will be identified and quantified here.We have also discussed different etching approaches for the synthesis of MXene,the dependence of MXene conductivity on MXene terminating groups,and the emission of various gaseous products that evolved during its chemical transformations.This paper provides significance,especially in the field of energy conversion and storage materials,where the intercalation process is crucial. 展开更多
关键词 MXene surface terminating groups Characterization CONDUCTIVITY Oxidation
在线阅读 下载PDF
Thermal-, photo- and electron-induced reactivity of hydrogen species on rutile TiO_2(110) surface: Role of oxygen vacancy 被引量:2
17
作者 Zongfang Wu Feng Xiong +1 位作者 Zhengming Wang Weixin Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第6期752-756,共5页
Interaction of hydrogen with TiO2 plays a vital role in TiO2-based photocatalysis and thermal catalysis. In this work, we compared thermal-, photo-, and electron-induced reactivity of various types of hydrogen species... Interaction of hydrogen with TiO2 plays a vital role in TiO2-based photocatalysis and thermal catalysis. In this work, we compared thermal-, photo-, and electron-induced reactivity of various types of hydrogen species on a rutile TiO2(110) surface formed by atomic H exposure at 320 and 115 K by means of thermal desorption spectroscopy, X-ray photoelectron spectroscopy and low energy electron diffraction. Atomic H interaction with rutile TiO2(110) at 115 K forms surface TiààH hydride, surface hydroxyl group, and chemisorbed water. Upon heating, surface TiààH hydride reacts to produce H2 while surface hydroxyl groups react to form both water and H2. Atomic H interaction with rutile TiO2(110) at 320 K strongly reduces TiO2 due to the continuous formation and desorption of water and forms surface hydroxyl groups and likely subsurface/bulk hydrogen species. Upon heating, hydrogen forms as the only gas-phase product and its desorption activation energy decreases with the subsurface/bulk reduction extent of rutile TiO2(110). Surface Ti-H hydride exhibits photo-induced reactivity while both surface TiààH hydride and surface hydroxyl group exhibit electro-induced reactivity. These results have important implications for understanding the hydrogen-involved thermal and photo reactions on TiO2-based catalysts. 展开更多
关键词 surface chemistry Atomic H surface Ti hydride surface hydroxyl group Subsurface/bulk hydrogen species
原文传递
Atomic defects,functional groups and properties in MXenes 被引量:1
18
作者 Wenjun Cui Zhi-Yi Hu +2 位作者 Raymond RUnocic Gustaaf Van Tendeloo Xiahan Sang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期339-344,共6页
MXenes,a new family of functional two-dimensional(2 D) materials,have shown great potential for an extensive variety of applications within the last decade.Atomic defects and functional groups in MXenes are known to h... MXenes,a new family of functional two-dimensional(2 D) materials,have shown great potential for an extensive variety of applications within the last decade.Atomic defects and functional groups in MXenes are known to have a tremendous influence on the functional properties.In this review,we focus on recent progress in the characterization of atomic defects and functional group chemistry in MXenes,and how to control them to directly influence various properties(e.g.,electron transport,Li^(+) adsorption,hydrogen evolution reaction(HER) activity,and magnetism) of 2 D MXenes materials.Dynamic structural transformations such as oxidation and growth induced by atomic defects in MXenes are also discussed.The review thus provides perspectives on property optimization through atomic defect engineering,and bottom-up synthesis methods based on defect-assisted homoepitaxial growth of MXenes. 展开更多
关键词 MXenes Atomic defects surface functional groups Electron microscopy Functional properties
原文传递
Dehydroxylation action on surface of TiO_2 films restrained by nitrogen carrier gas during atomic layer deposition process
19
作者 Zhi-Peng Rao Bang-Wu Liu +2 位作者 Chao-Bo Li Yang Xia Jun Wan 《Rare Metals》 SCIE EI CAS CSCD 2014年第5期583-586,共4页
A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system,... A strong influence of nitrogen gas on the content of surface hydroxyl groups of TiO2 films by atomic layer deposition(ALD) was investigated by X-ray photoelectron spectroscopy(XPS), contact angle measuring system, and UV–Vis spectrophotometer. XPS spectra of O 1s indicate that the content of surface hydroxyl groups is varied when using N2 as carrier gas. The results of water contact angles and optical reflection spectra show that the content variation of surface hydroxyl groups influences the wetting properties and optical reflectivity of TiO2 films. A surface reaction model is suggested to explain the ALD reaction process using N2 as carrier gas. 展开更多
关键词 Atomic layer deposition TIO2 N2 surface hydroxyl groups XPS Reaction model
原文传递
Investigation on the surface active sites variation of mineral dusts
20
作者 DONG Fa-qin, WAN Pu, FENG Qi-ming, SONG Gong-bao, PENG Tong-jiang (Institute of Mineral Materials and Applications, Southwest University of Science and Technology, Mianyang 621002, China) 《Journal of Central South University》 SCIE EI CAS 2001年第3期169-174,共6页
The paper analyzed the groups naked and the transformed of fibrous brucite, wollastonite, chrysotile asbestos, sepiolite, palygorskite, clinoptilolite, crocidolite and diatomaceous earth mineral dusts by using IR unde... The paper analyzed the groups naked and the transformed of fibrous brucite, wollastonite, chrysotile asbestos, sepiolite, palygorskite, clinoptilolite, crocidolite and diatomaceous earth mineral dusts by using IR under acid and alkali etched, strong mechanical and polarized molecular interaction. The results show that the active site focuses on ends in stick dusts and on defects or hole edges in pipe dusts. The inside active sites of dusts play the main role in small molecular substance. The shape of dusts affects their distributions and densities of active sites. The strong mechanical and weak chemical force make the active site feature of minerals change, the powder process brings about more naked surface groups and more combined types. The dust activity relates to the type, contribution, and naked level of surface groups. The studied dust surface groups are mainly as follows: OH?, Mg(OH)?, Si-O-Si, Ca-O-Si, -Mg-OH2,-Al(Si)-OH, -Mg(Ca)-OH2, Ca-O,-Si???OH, Mg(Fe)-OH. Due to the difference of surface composition and structure, the minerals have a large disparity on activity and character of surface groups. The one side surface group of chrysotile layer is the same as fibrous brucite and stripped layer with more naked group. The fibrous sepiolite and palygorskite surface OH? similar to crocidolite is naked with their surface structural defects and cleavage. The more development of mineral defects, the higher of OH? (H2O+) content, the main H2O+ of clinoptilolite is partly transformed into H+, NH 4 + or OH?. The acid etched process may change OH? concentration, distribution and increase the defects and porosity of mineral fiber surface. The alkali etched has no effect on Si-O, Si-OH etc. and destroyed Al-O, Al-OH? acid site of sepiolite, palygorskite and clinoptilolite. Some surface groups of remnant differ from original dusts. The surface process of small polarized molecular or middle moleular’s branch may produce ionation and new coordinate bond, and change the active properties and level of original dusts, such as the porous minerals producing 展开更多
关键词 mineral dusts surface group active site
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部