In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar perce...In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.展开更多
Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development...Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.展开更多
In this article,we show the existence,uniqueness and stability of bounded solutions to the following quasilinear problems with mean curvature operator(φ'(x′(t)))′=f(t,x),t≥t_(0),lim_(t→∞)x(t)=ψ_(0),lim_(t→...In this article,we show the existence,uniqueness and stability of bounded solutions to the following quasilinear problems with mean curvature operator(φ'(x′(t)))′=f(t,x),t≥t_(0),lim_(t→∞)x(t)=ψ_(0),lim_(t→∞)x′(t)e^(t)=0,where t_(0) and ψ_(0) are real constants,φ(s)=s/√1−s^(2),s∈R with s∈(−1,1),f:[t_(0),∞)×R→R satisfies the Lipschitz or Osgood-type conditions.展开更多
Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding str...Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.展开更多
Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic...In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.展开更多
This study introduces a novel bargaining solution termed the"'min-distance bargaining solution"and applies it to a differential games model.A comprehensive algorithm for implementing this new solution is...This study introduces a novel bargaining solution termed the"'min-distance bargaining solution"and applies it to a differential games model.A comprehensive algorithm for implementing this new solution is presented,considering its time consistency within the differential games framework.Realistic scenarios are carefully analyzed to derive insightful findings regarding the mindistance solution,which are further validated through simulations using the resource extraction differential games model.Specifically,we examine scenarios such as managing a finite resource stock in the resource extraction game.Furthermore,a comparative analysis is conducted,pitting the mindistance bargaining solution against well-established alternatives such as Nash bargaining,Kalai-Smorodinsky,and Egalitarian solutions.By subjecting these solutions to numerical evaluations,the study offers valuable insights into decision-making processes.The findings not only contribute to negotiation theory by providing theoretical support but also have practical implications for decision-makers seeking effective strategies.This research significantly advances the field of negotiation theory,particularly in the context of differential games.The proposed min-distance bargaining solution demonstrates its applicability to real-world scenarios and enhances our understanding of strategic decision-making.展开更多
Two-dimensional(2D)nitride MXenes are predicted to exhibit exceptional metallic properties and high polarity;however,their synthesis remains challenging.Research has relied on traditional molten salt etching,highlight...Two-dimensional(2D)nitride MXenes are predicted to exhibit exceptional metallic properties and high polarity;however,their synthesis remains challenging.Research has relied on traditional molten salt etching,highlighting the need for a scalable,high-purity approach.Here,we present the first solution-based synthesis of Ti_(4)N_(3)T_(x)MXene via a novel saturated salt solution(S^(3))etching technique employing alkali metal salts.By optimizing the sintering process for high-purity Ti_(4)AlN_(3)MAX and refining the S^(3)etching route,we significantly reduced the etch pit density to 1.2×10^(6)cm^(-2)and lowered the etch pit formation rate to 4%,yielding high-quality,phasepure Ti_(4)N_(3)T_(x)MXene.Our study highlights the critical role of alkali metal ions in selective A-layer removal and demonstrates the impressive electrical conductivity and electromagnetic interference shielding performance of 2D nitride MXene,setting a new benchmark for this underexplored material.These findings pave the way for advancing 2D nitride MXenes and their diverse applications.展开更多
Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining prac...Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining practices have adopted the layered solution mining approach,inspired by coal mining techniques.However,this approach fails to account for the unique challenges of salt solution mining.Practical implementation is inefficient,costs escalate post-construction,and cavern geometry is constrained by salt beds thickness.Additionally,resource loss in abandoned beds and stability risks in adjacent mining zones remain unresolved.This study investigates mining scheme selection for low-grade salt deposits in Huai'an Salt Basin,introducing a continuous solution mining method that traverses multiple interlayers.Through comprehensive analysis of plastic deformation in caverns and surrounding rock,volume shrinkage rates,and economic costs comparing continuous and layered solution mining approaches,the results demonstrate that:(1)In the layered solution mining with horizontal interconnected wells scheme,plastic deformation zones propagate unevenly,posing interlayer connectivity risks.Concurrently,roof subsidence and floor heave destabilize the structure;(2)the continuous solution mining with horizontal interconnected wells scheme reduces plastic deformation zones to 3.4%of cavern volume,with volumetric shrinkage below 17%,markedly improving stability;(3)Economically,the continuous solution mining scheme generates caverns 2.43 times larger than the layered solution mining,slashing unit volume costs to 41.1%while enhancing resource recovery and long-term viability.The continuous method demonstrates distinct economic advantages and achieves higher resource utilization efficiency in solution mining compared to layered mining.Furthermore,its superior cavern stability presents strong potential for large-scale implementation.展开更多
The(2+1)-dimensional integrable generalization of the Gardner(2DG)equation is solved via the inverse scattering transform method in this paper.A kind of general solution of the equation is obtained by introducing long...The(2+1)-dimensional integrable generalization of the Gardner(2DG)equation is solved via the inverse scattering transform method in this paper.A kind of general solution of the equation is obtained by introducing long derivatives V_(x),V_(y),V_(t).Two different constraints on the kernel function K are introduced under the reality of the solution u of the 2DG equation.Then,two classes of exact solutions with constant asymptotic values at infinity u|x^(2)+y^(2)→∞→0 are constructed by means of the∂¯-dressing method for the casesσ=1 andσ=i.The rational and multiple pole solutions of the 2DG equation are obtained with the kernel functions of zero-order and higher-order Dirac delta functions,respectively.展开更多
This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric ...This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.展开更多
For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions ...For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions that unite precision printers,high-performance inks,process know-how and AI-driven design—one ecosystem powering global industry upgrade with Chinese inkjet excellence.展开更多
In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary condi...In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.展开更多
Fractional differential equations have garnered significant attention within the mathematical and physical sciences due to the diverse range of fractional operators available.Fractional calculus has demonstrated its u...Fractional differential equations have garnered significant attention within the mathematical and physical sciences due to the diverse range of fractional operators available.Fractional calculus has demonstrated its utility across various disciplines,including biological modeling[1–5],applications in physics[6,7],most notably in the formulation of fractional diffusion equations,in robotics,and emerging areas such as intelligent artificial systems,among others.Numerous types of fractional operators exist,including those characterized by singular kernels,such as the Caputo and Riemann-Liouville derivatives[8,9].It is important to highlight that the Riemann-Liouville derivative exhibits certain limitations;most notably,the derivative of a constant is not zero,which poses a significant inconvenience.To circumvent this issue,the Caputo derivative was introduced.Additionally,there are fractional derivatives with non-singular kernels,such as the Caputo-Fabrizio derivative[10]and the Atangana-Baleanu fractional derivative[11],each providing unique advantages for modeling purposes.Given the growing interest in utilizing fractional operators for various modeling scenarios,it is imperative to propose robust methodologies for obtaining both approximate and exact solutions.Consequently,this special issue emphasizes the exploration of diverse numerical schemes aimed at deriving approximate solutions for the models under consideration.Furthermore,analytical methods have also been discussed,providing additional avenues for obtaining exact solutions.展开更多
The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear...The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear method,we systematically construct single-and double-periodic lump solutions.To provide a detailed insight into the dynamic behavior of the nonlinear waves,we explore diverse mixed solutions,including bright-dark,W-shaped,multi-peak,and bright soliton solutions.Building upon single-periodic lump solutions,we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method.Moreover,we obtain the interaction solutions involving lumps,periodic lumps,and solitons.The interactions among two solitons,multiple lumps,and mixed waves are illustrated and analyzed.Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones.These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.展开更多
The ammonium salt precipitation method is frequently utilized for extracting vanadium from the leaching solution obtained through sodium roasting of vanadium slag.However,Na^(+)and NH_(4)^(+)ions in the vanadium preci...The ammonium salt precipitation method is frequently utilized for extracting vanadium from the leaching solution obtained through sodium roasting of vanadium slag.However,Na^(+)and NH_(4)^(+)ions in the vanadium precipitation solution can not be effectively separated,leading to a large amount of ammonia-nitrogen wastewater which is difficult to treat.In this study,the manganese salt pretreatment process is used to extract vanadium from a sodium roasting leaching solution,enabling the separation of vanadium and sodium.The vanadium extraction product of manganese salt is dissolved in acid to obtain vanadium-containing leaching solution,then vanadium is extracted by hydrolysis and vanadium precipitation,and V_(2)O_(5)is obtained after impurity removal and calcination.The results show that the rate of vanadium extraction by manganese salt is 98.23%.The vanadium extraction product by manganese salt is Mn_(2)V_(2)O_(7),and its sodium content is only 0.167%.Additionally,the acid solubility of vanadium extraction products by manganese salt is 99.52%,and the vanadium precipitation rate of manganese vanadate solution is 92.34%.After the removal of manganese and calcination process,the purity of V_(2)O_(5)product reached 97.73%,with a mere 0.64%loss of vanadium.The Mn_(2)^(+)and NH_(4)^(+)ions in the solution after vanadium precipitation are separated by precipitation method,which reduces the generation of ammonia-nitrogen wastewater.This is conducive to the green and sustainable development of the vanadium industry.展开更多
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD....BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.展开更多
Solving nonlinear partial differential equations have attracted intensive attention in the past few decades.In this paper,the Darboux transformation method is used to derive several positon and hybrid solutions for th...Solving nonlinear partial differential equations have attracted intensive attention in the past few decades.In this paper,the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations.Based on the zero seed solution,the positon solution and the hybrid solutions of positon and soliton are constructed.The composition of positons is studied,showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions.Moreover,the interactions between positon and soliton are analyzed.In addition,the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution,and their evolutions with time are discussed.展开更多
Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegati...Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegative nontrivial spike-layer solutions and positive intermediate spike-layer solutions. Moreover, the upper and lower bound on the measure of each spike-layer were estimated when the parameter is sufficiently small.展开更多
Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method mor...Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.展开更多
基金Supported by the Doctoral Research Start-up Project of Yuncheng University(YQ-2023067)Project of Shanxi Natural Science Foundation(202303021211189)+1 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Provinces(20220036)Shanxi ProvinceIntelligent Optoelectronic Sensing Application Technology Innovation Center and Shanxi Province Optoelectronic Information Science and TechnologyLaboratory,Yuncheng University.
文摘In this study,a straightforward one-step hydrothermal method was successfully utilized to synthesize the solid solution Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)-Na_(2)Ni_(2)Ti_(6)O_(16)(NNMTO-x),where x denotes the molar percentage of Na_(2)Ni_(2)Ti_(6)O_(16)(NNTO)within Na_(0.9)Mg_(0.45)Ti_(3.55)O_(8)(NMTO),with x values of 10,20,30,40,and 50.Both XPS(X-ray Photoelectron Spectroscopy)and EDX(Energy Dispersive X-ray Spectroscopy)analyses unequivocally validated the formation of the NNMTO-x solid solutions.It was observed that when x is below 40,the NNMTO-x solid solution retains the structural characteristics of the original NMTO.However,beyond this threshold,significant alterations in crystal morphology were noted,accompanied by a noticeable decline in photocatalytic activity.Notably,the absorption edge of NNMTO-x(x<40)exhibited a shift towards the visible-light spectrum,thereby substantially broadening the absorption range.The findings highlight that NNMTO-30 possesses the most pronounced photocatalytic activity for the reduction of CO_(2).Specifically,after a 6 h irradiation period,the production rates of CO and CH_(4)were recorded at 42.38 and 1.47μmol/g,respectively.This investigation provides pivotal insights that are instrumental in the advancement of highly efficient and stable photocatalysts tailored for CO_(2)reduction processes.
基金supported by the China Agriculture Research System(Grant No.CARS-23-D06)the Key Research and Development Program of Shaanxi Province(Grant Nos.2024NC2-GJHX-29 and 2024NC-ZDCYL-05-08)Shaanxi Agricultural Collaborative Innovation and Extension Alliance Project(Grant No.LMZD202202).
文摘Substrate and nutrient supply are essential for vegetable cultivation in greenhouse.The strategies for plant nutrient supply vary depending on the cultivation methods or substrate dosages employed.With the development of mechanization,wide-row spacing substrate cultivation became an optimize mode of the greenhouse cucumber cultivation,aligning with the trend of intelligent agriculture.To determine the optimal nutrient solution supply amount(NS)and supply frequency(SF)for promoting the integrated growth of cucumber under wide-row spacing substrate cultivation,we explored the effects of substrate supply amount(SS),NS,and SF on cucumber yield,quality,and element utilization efficiency.A five-level quadratic orthogonal rotation combination design with three experimental factors(NS,SF,and SS)was implemented for 23 coupling treatments over three growing seasons,including spring(2022S and 2023S)and autumn(2022A).The technique for order preference by similarity to ideal solution(TOPSIS)combining weights based on game theory was applied to construct cucumber comprehensive growth evaluation model.Single and two experimental factors analyses revealed significant effects of single factors and the coupling of NS-SS,NS-SF and SS-SF on the integrated growth of cucumber for all three growing seasons.For the NS-SF-SS combination,the optimal parameters for comprehensive cucumber growth were determined as follows:levels of^(-1).68 for NS,-0.7 for SF,and^(-1).682 for SS in 2022A;-0.43 for NS,-0.06 for SF,and 0.34 for SS in 2022S;0.3 for NS,-0.02 for SF,and 0.04 for SS in 2023S.Furthermore,for SS ranges of 2.00-3.01,3.01-4.50,4.50-5.99,5.99-7.00(L·plant^(-1)),the corresponding NS and SF intervals maximizing cucumber integrated growth in spring were:0.28-0.30(L·plant^(-1))and 6(times·d^(-1)),0.26-0.30(L·plant^(-1))and 6(times·d^(-1)),0.25-0.30(L·plant^(-1))and 6(times·d^(-1)),0.23-0.30(L·plant^(-1))and 6(times·d^(-1)),respectively.With the same SS,the corresponding NS and SF intervals that maximized cucumber integrated growth in autumn were:0.10(L·plant^(-1))and 8(times·d^(-1)),0.18(L·plant^(-1))and 7(times·d^(-1)),0.30(L·plant^(-1))and 6(times·d^(-1)),0.49(L·plant^(-1))and 5(times·d^(-1)),respectively.The results provide a theoretical basis for solution management,and further in-depth research on cucumber cultivation.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12361040,12061064)the Na-tional Science Foundation of Gansu Province(Grant No.22JR5RA264)State Scholarship Fund(Grant No.20230862021).
文摘In this article,we show the existence,uniqueness and stability of bounded solutions to the following quasilinear problems with mean curvature operator(φ'(x′(t)))′=f(t,x),t≥t_(0),lim_(t→∞)x(t)=ψ_(0),lim_(t→∞)x′(t)e^(t)=0,where t_(0) and ψ_(0) are real constants,φ(s)=s/√1−s^(2),s∈R with s∈(−1,1),f:[t_(0),∞)×R→R satisfies the Lipschitz or Osgood-type conditions.
基金supported by the National Key R&D Program of China (No. 2018YFA0707300)the National Natural Science Foundation of China (No. 52374376)the Introduction Plan for High end Foreign Experts, China (No. G2023105001L)。
文摘Titanium plates with a Ti−O solid solution surface-hardened layer were cold roll-bonded with 304 stainless steel plates with high work hardening rates.The evolution and mechanisms affecting the interfacial bonding strength in titanium/stainless steel laminated composites were investigated.Results indicate that the hardened layer reduces the interfacial bonding strength from over 261 MPa to less than 204 MPa.During the cold roll-bonding process,the hardened layer fractures,leading to the formation of multi-scale cracks that are difficult for the stainless steel to fill.This not only hinders the development of an interlocking interface but also leads to the presence of numerous microcracks and hardened blocks along the nearly straight interface,consequently weakening the interfacial bonding strength.In metals with high work hardening rates,the conventional approach of enhancing interface interlocking and improving interfacial bonding strength by using a surface-hardened layer becomes less effective.
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.
基金partially supported by RGC(No.17307420)supported by NSFC(No.12471077)。
文摘In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.
文摘This study introduces a novel bargaining solution termed the"'min-distance bargaining solution"and applies it to a differential games model.A comprehensive algorithm for implementing this new solution is presented,considering its time consistency within the differential games framework.Realistic scenarios are carefully analyzed to derive insightful findings regarding the mindistance solution,which are further validated through simulations using the resource extraction differential games model.Specifically,we examine scenarios such as managing a finite resource stock in the resource extraction game.Furthermore,a comparative analysis is conducted,pitting the mindistance bargaining solution against well-established alternatives such as Nash bargaining,Kalai-Smorodinsky,and Egalitarian solutions.By subjecting these solutions to numerical evaluations,the study offers valuable insights into decision-making processes.The findings not only contribute to negotiation theory by providing theoretical support but also have practical implications for decision-makers seeking effective strategies.This research significantly advances the field of negotiation theory,particularly in the context of differential games.The proposed min-distance bargaining solution demonstrates its applicability to real-world scenarios and enhances our understanding of strategic decision-making.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(Grant No.RS-2024-00408180)by Institute for Basic Science(No.IBS-R019-G1).
文摘Two-dimensional(2D)nitride MXenes are predicted to exhibit exceptional metallic properties and high polarity;however,their synthesis remains challenging.Research has relied on traditional molten salt etching,highlighting the need for a scalable,high-purity approach.Here,we present the first solution-based synthesis of Ti_(4)N_(3)T_(x)MXene via a novel saturated salt solution(S^(3))etching technique employing alkali metal salts.By optimizing the sintering process for high-purity Ti_(4)AlN_(3)MAX and refining the S^(3)etching route,we significantly reduced the etch pit density to 1.2×10^(6)cm^(-2)and lowered the etch pit formation rate to 4%,yielding high-quality,phasepure Ti_(4)N_(3)T_(x)MXene.Our study highlights the critical role of alkali metal ions in selective A-layer removal and demonstrates the impressive electrical conductivity and electromagnetic interference shielding performance of 2D nitride MXene,setting a new benchmark for this underexplored material.These findings pave the way for advancing 2D nitride MXenes and their diverse applications.
基金supported by the National Natural Science Foundation of China(Nos.42177124 and 41877277)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022011)+2 种基金Fundamental Research Funds for the Central Universities(No.2024KYJD1011)Frontier Technologies R&D Program of Jiangsu(No.BF2024056)the Graduate Innovation Program of China University of Mining and Technology(No.KYCX25_3085)。
文摘Salt deposits in China predominantly originate from lake deposits,characterized by thin salt beds interspersed with numerous interlayers,collectively termed bedded salt formations.Historically,the solution mining practices have adopted the layered solution mining approach,inspired by coal mining techniques.However,this approach fails to account for the unique challenges of salt solution mining.Practical implementation is inefficient,costs escalate post-construction,and cavern geometry is constrained by salt beds thickness.Additionally,resource loss in abandoned beds and stability risks in adjacent mining zones remain unresolved.This study investigates mining scheme selection for low-grade salt deposits in Huai'an Salt Basin,introducing a continuous solution mining method that traverses multiple interlayers.Through comprehensive analysis of plastic deformation in caverns and surrounding rock,volume shrinkage rates,and economic costs comparing continuous and layered solution mining approaches,the results demonstrate that:(1)In the layered solution mining with horizontal interconnected wells scheme,plastic deformation zones propagate unevenly,posing interlayer connectivity risks.Concurrently,roof subsidence and floor heave destabilize the structure;(2)the continuous solution mining with horizontal interconnected wells scheme reduces plastic deformation zones to 3.4%of cavern volume,with volumetric shrinkage below 17%,markedly improving stability;(3)Economically,the continuous solution mining scheme generates caverns 2.43 times larger than the layered solution mining,slashing unit volume costs to 41.1%while enhancing resource recovery and long-term viability.The continuous method demonstrates distinct economic advantages and achieves higher resource utilization efficiency in solution mining compared to layered mining.Furthermore,its superior cavern stability presents strong potential for large-scale implementation.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1237125611971475)。
文摘The(2+1)-dimensional integrable generalization of the Gardner(2DG)equation is solved via the inverse scattering transform method in this paper.A kind of general solution of the equation is obtained by introducing long derivatives V_(x),V_(y),V_(t).Two different constraints on the kernel function K are introduced under the reality of the solution u of the 2DG equation.Then,two classes of exact solutions with constant asymptotic values at infinity u|x^(2)+y^(2)→∞→0 are constructed by means of the∂¯-dressing method for the casesσ=1 andσ=i.The rational and multiple pole solutions of the 2DG equation are obtained with the kernel functions of zero-order and higher-order Dirac delta functions,respectively.
基金supported by the Opening Project of State Key Laboratory of Mechanical Transmission for Advanced Equipment(No.SKLMT-MSKFKT202330)the National Natural Science Foundation of China(No.52575022)the Jiangsu Province Postgraduate Research&Practice Innovation Program(No.KYCX25_1403)。
文摘This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.
文摘For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions that unite precision printers,high-performance inks,process know-how and AI-driven design—one ecosystem powering global industry upgrade with Chinese inkjet excellence.
基金Supported by the National Natural Science Foundation of China(12361040)。
文摘In this work,we demonstrate that the existence of an Z-shaped connected component within the set of positive solutions for the one-dimensional prescribed mean curvature equation in Minkowski space■with boundary conditions having parameter in two cases f(O)=0 and f(0)>0 by using upper and lower solution method,where λ>0 is a parameter,f∈C^(2)([0,∞),R)is monotonically increasing and lim_(μ→1)^(f(u)/1-u=0,h∈C^(1)([0,1],(0,∞))is a nonincreasing function and h(t)>1.
文摘Fractional differential equations have garnered significant attention within the mathematical and physical sciences due to the diverse range of fractional operators available.Fractional calculus has demonstrated its utility across various disciplines,including biological modeling[1–5],applications in physics[6,7],most notably in the formulation of fractional diffusion equations,in robotics,and emerging areas such as intelligent artificial systems,among others.Numerous types of fractional operators exist,including those characterized by singular kernels,such as the Caputo and Riemann-Liouville derivatives[8,9].It is important to highlight that the Riemann-Liouville derivative exhibits certain limitations;most notably,the derivative of a constant is not zero,which poses a significant inconvenience.To circumvent this issue,the Caputo derivative was introduced.Additionally,there are fractional derivatives with non-singular kernels,such as the Caputo-Fabrizio derivative[10]and the Atangana-Baleanu fractional derivative[11],each providing unique advantages for modeling purposes.Given the growing interest in utilizing fractional operators for various modeling scenarios,it is imperative to propose robust methodologies for obtaining both approximate and exact solutions.Consequently,this special issue emphasizes the exploration of diverse numerical schemes aimed at deriving approximate solutions for the models under consideration.Furthermore,analytical methods have also been discussed,providing additional avenues for obtaining exact solutions.
基金supported by the Applied Basic Research Program of Shanxi Province,China(Grant Nos.202403021212253 and 202203021221217).
文摘The(2+1)-dimensional generalized coupled nonlinear Schrödinger equations with a four-wave mixing term are studied in this paper,which describe optical solitons in birefringent fibers.Utilizing the Hirota bilinear method,we systematically construct single-and double-periodic lump solutions.To provide a detailed insight into the dynamic behavior of the nonlinear waves,we explore diverse mixed solutions,including bright-dark,W-shaped,multi-peak,and bright soliton solutions.Building upon single-periodic lump solutions,we analyze the dynamics of lump waves on both plane-wave and periodic backgrounds using the long-wave limit method.Moreover,we obtain the interaction solutions involving lumps,periodic lumps,and solitons.The interactions among two solitons,multiple lumps,and mixed waves are illustrated and analyzed.Comparative analysis reveals that these multi-lump solutions exhibit richer dynamical properties than conventional single-lump ones.These results contribute to a deeper understanding of nonlinear systems and may facilitate solving nonlinear problems in nature.
基金supported by the National Natural Science Foundation of China(52204309,52374300 and 52174277)the Opening Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,China(2022P4FZG11A).
文摘The ammonium salt precipitation method is frequently utilized for extracting vanadium from the leaching solution obtained through sodium roasting of vanadium slag.However,Na^(+)and NH_(4)^(+)ions in the vanadium precipitation solution can not be effectively separated,leading to a large amount of ammonia-nitrogen wastewater which is difficult to treat.In this study,the manganese salt pretreatment process is used to extract vanadium from a sodium roasting leaching solution,enabling the separation of vanadium and sodium.The vanadium extraction product of manganese salt is dissolved in acid to obtain vanadium-containing leaching solution,then vanadium is extracted by hydrolysis and vanadium precipitation,and V_(2)O_(5)is obtained after impurity removal and calcination.The results show that the rate of vanadium extraction by manganese salt is 98.23%.The vanadium extraction product by manganese salt is Mn_(2)V_(2)O_(7),and its sodium content is only 0.167%.Additionally,the acid solubility of vanadium extraction products by manganese salt is 99.52%,and the vanadium precipitation rate of manganese vanadate solution is 92.34%.After the removal of manganese and calcination process,the purity of V_(2)O_(5)product reached 97.73%,with a mere 0.64%loss of vanadium.The Mn_(2)^(+)and NH_(4)^(+)ions in the solution after vanadium precipitation are separated by precipitation method,which reduces the generation of ammonia-nitrogen wastewater.This is conducive to the green and sustainable development of the vanadium industry.
基金Supported by Science and Technology Department of Sichuan Province,No.2020YFS0376National Natural Science Foundation of China,No.81900599Science and Technology Program of Hospital of TCM,Southwest Medical University,No.2022-CXTD-01.
文摘BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection(ESD).Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD.AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution(KFX)in mitigating excessive fibrotic repair of the esophagus post-ESD.METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD.Endoscopic examinations occurred on days 7 and 21 post-ESD.In vitro,recombinant transforming growth factor(TGF)-β1(5 ng/mL)induced a fibrotic microenvironment in primary esophageal fibroblasts(pEsF).After 24 hours of KFX treatment(at 1.5%,1%,and 0.5%),expression ofα-smooth muscle actin-2(ACTA2),fibronectin(FN),and type collagen I was assessed.Profibrotic signaling was analyzed,including TGF-β1,Smad2/3,and phosphor-smad2/3(p-Smad2/3).RESULTS Compared to the Control group,the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis,lower weight loss rates,and improved food tolerance 21 d after ESD.After treatment,Masson staining revealed thinner and less dense collagen fibers in the submucosal layer.Additionally,the expression of fibrotic effector molecules was notably inhibited.Mechanistically,KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1,Smad2/3,and p-Smad2/3.In vitro,pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity,which was reversed by KFX treatment,leading to reduced activation of ACTA2,FN,and collagen I.The 1.5%KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF.CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures,potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
基金Project sponsored by NUPTSF(Grant Nos.NY220161and NY222169)the Foundation of Jiangsu Provincial Double-Innovation Doctor Program(Grant No.JSSCBS20210541)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(Grant No.22KJB110004)the National Natural Science Foundation of China(Grant No.11871446)。
文摘Solving nonlinear partial differential equations have attracted intensive attention in the past few decades.In this paper,the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations.Based on the zero seed solution,the positon solution and the hybrid solutions of positon and soliton are constructed.The composition of positons is studied,showing that multi-positons of(2+1)-dimensional equations are decomposed into multi-solitons as well as the(1+1)-dimensions.Moreover,the interactions between positon and soliton are analyzed.In addition,the hybrid solutions of b-positon and breather are obtained using the plane wave seed solution,and their evolutions with time are discussed.
文摘Structure of nonnegative nontrivial and positive solutions was precisely studied for some singularly perturbed p-Laplace equations. By virtue of sub- and supersolution method, it is shown that there are many nonnegative nontrivial spike-layer solutions and positive intermediate spike-layer solutions. Moreover, the upper and lower bound on the measure of each spike-layer were estimated when the parameter is sufficiently small.
基金supported by the National Natural Science Foun-dation of China(Nos.52025028,52332008,52372214,52202273,and U22A20137)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Tin(Sn)-lead(Pb)mixed halide perovskites have attracted widespread interest due to their wider re-sponse wavelength and lower toxicity than lead halide perovskites,Among the preparation methods,the two-step method more easily controls the crystallization rate and is suitable for preparing large-area per-ovskite devices.However,the residual low-conductivity iodide layer in the two-step method can affect carrier transport and device stability,and the different crystallization rates of Sn-and Pb-based per-ovskites may result in poor film quality.Therefore,Sn-Pb mixed perovskites are mainly prepared by a one-step method.Herein,a MAPb_(0.5)Sn_(0.5)I_(3)-based self-powered photodetector without a hole transport layer is fabricated by a two-step method.By adjusting the concentration of the ascorbic acid(AA)addi-tive,the final perovskite film exhibited a pure phase without residues,and the optimal device exhibited a high responsivity(0.276 A W^(-1)),large specific detectivity(2.38×10^(12) Jones),and enhanced stability.This enhancement is mainly attributed to the inhibition of Sn2+oxidation,the control of crystal growth,and the sufficient reaction between organic ammonium salts and bottom halides due to the AA-induced pore structure.