期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Recommendation Algorithm Based on Probabilistic Matrix Factorization with Adaboost 被引量:3
1
作者 Hongtao Bai Xuan Li +3 位作者 Lili He Longhai Jin Chong Wang Yu Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1591-1603,共13页
A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,s... A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,such as diabetes.Current dietary recommendations employ association rules,content-based collaborative filtering,and constraint-based methods,which have several limitations.These limitations are due to the existence of a special user group and an imbalance of non-simple attributes.Making use of traditional dietary recommendation algorithm researches,we combine the Adaboost classifier with probabilistic matrix factorization.We present a personalized diet recommendation algorithm by taking advantage of probabilistic matrix factorization via Adaboost.A probabilistic matrix factorization method extracts the implicit factors between individual food preferences and nutritional characteristics.From this,we can make use of those features with strong influence while discarding those with little influence.After incorporating these changes into our approach,we evaluated our algorithm’s performance.Our results show that our method performed better than others at matching preferred foods with dietary requirements,benefiting user health as a result.The algorithm fully considers the constraint relationship between users’attributes and nutritional characteristics of foods.Considering many complex factors in our algorithm,the recommended food result set meets both health standards and users’dietary preferences.A comparison of our algorithm with others demonstrated that our method offers high accuracy and interpretability. 展开更多
关键词 RECOMMENDATION probabilistic matrix factorization ADABOOST characteristics correlation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部