Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing...Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks.展开更多
The unfolding problem of loop has always been a difficult problem on the partial computation and Generalized Partial Computation( GPC ) of imperative language. This paper makes use of Data Flow Analysis( DFA ) tec...The unfolding problem of loop has always been a difficult problem on the partial computation and Generalized Partial Computation( GPC ) of imperative language. This paper makes use of Data Flow Analysis( DFA ) technique to present an efficient termination condition of unfolding loop for partial evaluation or generalized partial evaluation, and this termination condition can solve the problem very well.展开更多
Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased re...Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.展开更多
In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals....In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals. The advantages of the method discussed in the paper are clear in physical meaning and easy to compute at the end of the paper,the application of the method to the identification of an air compressor noise source is presented and the results are satisfactory.展开更多
Recent advancements in spatial transcriptomics(ST)technologies offer unprecedented opportunities to unveil the spatial heterogeneity of gene expression and cell states within tissues.Despite these capabilities of the ...Recent advancements in spatial transcriptomics(ST)technologies offer unprecedented opportunities to unveil the spatial heterogeneity of gene expression and cell states within tissues.Despite these capabilities of the ST data,accurately dissecting spatiotemporal structures(e.g.,spatial domains,temporal trajectories,and functional interactions)remains challenging.Here,we introduce a computational framework,PearlST(partial differential equation[PDE]-enhanced adversarial graph autoencoder of ST),for accurate inference of spatiotemporal structures from the ST data using PDE-enhanced adversarial graph autoencoder.PearlST employs contrastive learning to extract histological image features,integrates a PDE-based diffusion model to enhance characterization of spatial features at domain boundaries,and learns the latent low-dimensional embeddings via Wasserstein adversarial regularized graph autoencoders.Comparative analyses across multiple ST datasets with varying resolutions demonstrate that PearlST outperforms existing methods in spatial clustering,trajectory inference,and pseudotime analysis.Furthermore,PearlST elucidates functional regulations of the latent features by linking intercellular ligand-receptor interactions to most contributing genes of the low-dimensional embeddings,as illustrated in a human breast cancer dataset.Overall,PearlST proves to be a powerful tool for extracting interpretable latent features and dissecting intricate spatiotemporal structures in ST data across various biological contexts.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62072096in part by the Fundamental Research Funds for the Central Universities under Grant 2232020A12+3 种基金in part by the International S&T Cooperation Program of Shanghai Science and Technology Commission under Grant 20220713000in part by “Shuguang Program” of Shanghai Education Development Foundation and Shanghai Municipal Education Commissionin part by the Young Top-notch Talent Program in Shanghaiin part by “the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University” under Grant CUSF-DH-D-2021058。
文摘Mobile edge computing(MEC)emerges as a paradigm to free mobile devices(MDs)from increasingly dense computing workloads in 6G networks.The quality of computing experience can be greatly improved by offloading computing tasks from MDs to MEC servers.Renewable energy harvested by energy harvesting equipments(EHQs)is considered as a promising power supply for users to process and offload tasks.In this paper,we apply the uniform mobility model of MDs to derive a more realistic wireless channel model in a multi-user MEC system with batteries as EHQs to harvest and storage energy.We investigate an optimization problem of the weighted sum of delay cost and energy cost of MDs in the MEC system.We propose an effective joint partial computation offloading and resource allocation(CORA)algorithm which is based on deep reinforcement learning(DRL)to obtain the optimal scheduling without prior knowledge of task arrival,renewable energy arrival as well as channel condition.The simulation results verify the efficiency of the proposed algorithm,which undoubtedly minimizes the cost of MDs compared with other benchmarks.
文摘The unfolding problem of loop has always been a difficult problem on the partial computation and Generalized Partial Computation( GPC ) of imperative language. This paper makes use of Data Flow Analysis( DFA ) technique to present an efficient termination condition of unfolding loop for partial evaluation or generalized partial evaluation, and this termination condition can solve the problem very well.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 62171113 and 61941113in part by the Fundamental Research Funds for the Central Universities under Grant N2116003 and N2116011.
文摘Mobile Edge Computing(MEC)-based computation offloading is a promising application paradigm for serving large numbers of users with various delay and energy requirements.In this paper,we propose a flexible MECbased requirement-adaptive partial offloading model to accommodate each user's specific preference regarding delay and energy consumption.To address the dimensional differences between time and energy,we introduce two normalized parameters and then derive the computational overhead of processing tasks.Different from existing works,this paper considers practical variations in the user request patterns,and exploits a flexible partial offloading mode to minimize computation overheads subject to tolerable delay,task workload and power constraints.Since the resulting problem is non-convex,we decouple it into two convex subproblems and present an iterative algorithm to obtain a feasible offloading solution.Numerical experiments show that our proposed scheme achieves a significant improvement in computation overheads compared with existing schemes.
文摘In this paper, a new method is applied to get the computation formula of partial coherence function. The main attention is paid to the computation formula of the partial coherence function with three and four signals. The advantages of the method discussed in the paper are clear in physical meaning and easy to compute at the end of the paper,the application of the method to the identification of an air compressor noise source is presented and the results are satisfactory.
基金supported by grants from the National Key R&D Program of China(2021YFF1200903)the National Natural Science Foundation of China(62273364,11931019,11871070,and 62362062)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2020B1515020047)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(231lgbj025)the open fund of Information Materials and Intelligent Sensing Laboratory of Anhui Province(grant no.IMIS202105).
文摘Recent advancements in spatial transcriptomics(ST)technologies offer unprecedented opportunities to unveil the spatial heterogeneity of gene expression and cell states within tissues.Despite these capabilities of the ST data,accurately dissecting spatiotemporal structures(e.g.,spatial domains,temporal trajectories,and functional interactions)remains challenging.Here,we introduce a computational framework,PearlST(partial differential equation[PDE]-enhanced adversarial graph autoencoder of ST),for accurate inference of spatiotemporal structures from the ST data using PDE-enhanced adversarial graph autoencoder.PearlST employs contrastive learning to extract histological image features,integrates a PDE-based diffusion model to enhance characterization of spatial features at domain boundaries,and learns the latent low-dimensional embeddings via Wasserstein adversarial regularized graph autoencoders.Comparative analyses across multiple ST datasets with varying resolutions demonstrate that PearlST outperforms existing methods in spatial clustering,trajectory inference,and pseudotime analysis.Furthermore,PearlST elucidates functional regulations of the latent features by linking intercellular ligand-receptor interactions to most contributing genes of the low-dimensional embeddings,as illustrated in a human breast cancer dataset.Overall,PearlST proves to be a powerful tool for extracting interpretable latent features and dissecting intricate spatiotemporal structures in ST data across various biological contexts.