Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g...Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.展开更多
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ...By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.展开更多
The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal mod...The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal model of rotating target with fixed acceleration is presented and the weighted linear least squares estimation of rotational parameters with fixed velocity or acceleration is proposed via the relationship of cross-range FM (frequency modulation) parameter, scatterers coordinates and rotational parameters. The FM parameter is calculated via RWT (Radon-Wigner transform). The ISAR imaging and cross-range scaling based on scaled RWT imaging method are implemented after obtaining rotational parameters. The rotational parameters estimation and cross-range scaling are validated by the ISAR processing of experimental radar data, and the method presents good application foreground to the ISAR imaging and scaling of maneuvering target.展开更多
Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles(IoV).Mixture models are appropriate to describe complex spatial-temporal data.By calculating the expectation...Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles(IoV).Mixture models are appropriate to describe complex spatial-temporal data.By calculating the expectation of hidden variables in vehicle communication,Expectation Maximization(EM)algorithm solves the maximum likelihood estimation of parameters,and then obtains the mixture model of vehicle communication opportunities.However,the EM algorithm requires multiple iterations and each iteration needs to process all the data.Thus its computational complexity is high.A parameter estimation algorithm with low computational complexity based on Bin Count(BC)and Differential Evolution(DE)(PEBCDE)is proposed.It overcomes the disadvantages of the EM algorithm in solving mixture models for big data.In order to reduce the computational complexity of the mixture models in the IoV,massive data are divided into relatively few time intervals and then counted.According to these few counted values,the parameters of the mixture model are obtained by using DE algorithm.Through modeling and analysis of simulation data and instance data,the PEBCDE algorithm is verified and discussed from two aspects,i.e.,accuracy and efficiency.The numerical solution of the probability distribution parameters is obtained,which further provides a more detailed statistical model for the distribution of the opportunity interval of the IoV.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dyn...To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dynamic models on the LIDAR measurements.Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities.In the proposed EKFs,the traditional quaternions based kinematics and dynamics and the dual vector quaternions(DVQ)based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite and an uncooperative target.In the non-contact estimating scenarios,only highly nonlinear relative attitude and range measurements:the grapple fixture on the target measured from the chaser satellite via vision-based sensors,can be used.By evaluating the results of the EKFs,the observability properties of each EKF are studied analytically and numerically with the the Observability Gramian matrices(OG)and the standard deviations for every estimated parameters.The analysis of observability perform intensive studies and reveal the intrinsic factors that affect the accuracy and stability of the parameters estimation of an uncooperative space target.Finally,the analytical and numerical results show the optimal composition of the kinematic&dynamic models and measurements.展开更多
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu...This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.展开更多
The resource parameter estimation using stochastic finite element, geostatistics etc. is a key point on uncertainty, risk analysis, optimization [1-5] etc. In this view, the paper presents some consideration on: 1) St...The resource parameter estimation using stochastic finite element, geostatistics etc. is a key point on uncertainty, risk analysis, optimization [1-5] etc. In this view, the paper presents some consideration on: 1) Stochastic finite element estimation. The concept of random element is simplified as a stochastic finite element (SFE) taking into account a parallelepiped element with eight nodes in which are given the probability density functions (pdf) on its point supports. In this context it is shown: a—the stochastic finite element is a linear interpolator, related to the distributions given at each nodes;b—the distribution pdf in whatever point x ∈ V;c—the estimation of the mean value of Z(x);2) Volume integrals calculus;3) SFE in geostatistics approaches;4) SFE in PDE solution. Finally, some conclusions are presented underlying the importance of SFE展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced...Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.展开更多
Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitc...Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitch,roll and yaw.An improved contact model is adopted aimed at the loose and rough lunar terrain.Using this kinematics model and numerical continuous and discrete Newton's method with iterative factor,the numerical method for estimation of kinematical parameters of articulated rovers on loose and rough terrain is constructed.To demonstrate this numerical method,an example of two torsion bar rocker-bogie lunar rover with eight wheels is presented.Simulation results show that the numerical method for estimation of kinematical parameters of articulated rovers based on improved contact model can improve the precision of kinematical estimation on loose and rough terrain and decrease errors caused by contact models established based on general hypothesis.展开更多
Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the targ...Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.展开更多
The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistan...The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistant and optimized)to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information(QFI) and quantum signal-to-noise ratio(QSNR) across sub-Ohmic,Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant π-pulse sequence, the optimized π-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.展开更多
To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in te...To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in temporal domain. Based on this parametric model, maximum likelihood, subspace based method and other super- resolution methods are introduced into the Doppler parameters estimation, and more excellent performance is obtained than with the conventional approaches in frequency domain. The theoretical derivation and real experimental results are also provided to validate this novel model and methods of parameter estimating.展开更多
Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te...Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.展开更多
The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not.For its shortcoming,a method to measure multi collinearity of a matrix was put forward.The metho...The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not.For its shortcoming,a method to measure multi collinearity of a matrix was put forward.The method is that implement Gram Schmidt orthogonalizing process to column vectors of a design matrix A(αl),then calculate the norms of every vector before and after orthogonalization process and their corresponding ratio,and use the minimum ratio among the group of ratios to measure the multi collinearity of A.According to the corresponding relationship between the multi collinearity and the ill conditioned state of a matrix,the method also studies and offers reference indexes weighing the ill conditioned state of a matrix based on the relative norm.The remarkable characteristics of the method are that the measure of multi collinearity has idiographic geometry meaning and clear lower and upper limit,the size of the measure reflects the multi collinearity of column vectors objectively.It is convenient to study the reason that results in the matrix being multi collinearity and to put forward solving plan according to the method which is summarized as the method of minimum norm and abbreviated as F method.展开更多
One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sens...One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sensing data. Using remote sensing image and the inventory data from 2 compartments in northeast Florida, U.S.A., this paper explored the correlation between forest stand parameters and Landsat TM spectral digital number (DN) value. Results showed that less than 50% of the total variance could be explained by linear regression models with only either a single band or such vegetation indices as vegetation index (VI) or normalized difference vegetation index (NDVI) as predicators. In consequence, multi-linear regression models which synthesized more predicators were introduced to estimate forest parameters. Regression results were tested in terms of the other group of data, and verification showed a better capability of explaining over 75% variance except for forest density. The weakness and further improvement of prediction models were also discussed in the article. This paper is expected to provide a better understanding of the relationship between TM spectral and forest characteristics展开更多
An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such...An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such as stationarity, Markov property, independence and ergodicity is imposed on any of the processes {y(n)}, {phi-n}, {theta-n} and {upsilon-n}. It is shown that the alpha-th moment of the estimation error is of order of the alpha-th moment of the observation noise and the parameter variation w(n) change in equivalence theta-n - theta-n-1.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
基金supported via funding from Prince Sattam Bin Abdulaziz University project number(PSAU/2025/R/1446).
文摘Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers.
基金supported by the National Natural Science Foundation of China(6120113461201135)+2 种基金the 111 Project(B08038)the Fundamental Research Funds for the Central Universities(72124669)the Open Research Fund of the Academy of Application(2014CXJJ-TX06)
文摘By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.
基金supported by the National Natural Science Foundation of China (60875019)
文摘The rotational parameters estimation of maneuvering target is the key of cross-range scaling of ISAR (inverse synthetic aperture radar), which can be used in the target feature extraction. The cross-range signal model of rotating target with fixed acceleration is presented and the weighted linear least squares estimation of rotational parameters with fixed velocity or acceleration is proposed via the relationship of cross-range FM (frequency modulation) parameter, scatterers coordinates and rotational parameters. The FM parameter is calculated via RWT (Radon-Wigner transform). The ISAR imaging and cross-range scaling based on scaled RWT imaging method are implemented after obtaining rotational parameters. The rotational parameters estimation and cross-range scaling are validated by the ISAR processing of experimental radar data, and the method presents good application foreground to the ISAR imaging and scaling of maneuvering target.
基金This work was supported by the Fundamental Research Funds for the Central Universities(Grant No.FRF-BD-20-11A)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(Grant No.BK19AF005).
文摘Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles(IoV).Mixture models are appropriate to describe complex spatial-temporal data.By calculating the expectation of hidden variables in vehicle communication,Expectation Maximization(EM)algorithm solves the maximum likelihood estimation of parameters,and then obtains the mixture model of vehicle communication opportunities.However,the EM algorithm requires multiple iterations and each iteration needs to process all the data.Thus its computational complexity is high.A parameter estimation algorithm with low computational complexity based on Bin Count(BC)and Differential Evolution(DE)(PEBCDE)is proposed.It overcomes the disadvantages of the EM algorithm in solving mixture models for big data.In order to reduce the computational complexity of the mixture models in the IoV,massive data are divided into relatively few time intervals and then counted.According to these few counted values,the parameters of the mixture model are obtained by using DE algorithm.Through modeling and analysis of simulation data and instance data,the PEBCDE algorithm is verified and discussed from two aspects,i.e.,accuracy and efficiency.The numerical solution of the probability distribution parameters is obtained,which further provides a more detailed statistical model for the distribution of the opportunity interval of the IoV.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
文摘To study the parameter estimating effects of a free-floating tumbling space target,the extended Kalman filter(EKF)scheme is utilized with different high-nonlinear translational and rotational coupled kinematic&dynamic models on the LIDAR measurements.Applying the aforementioned models and measurements results in the situation where one single state can be estimated differently with varying accuracies since the EKFs based on different models have different observabilities.In the proposed EKFs,the traditional quaternions based kinematics and dynamics and the dual vector quaternions(DVQ)based kinematics and dynamics are used for the modeling of the relative motions between a chaser satellite and an uncooperative target.In the non-contact estimating scenarios,only highly nonlinear relative attitude and range measurements:the grapple fixture on the target measured from the chaser satellite via vision-based sensors,can be used.By evaluating the results of the EKFs,the observability properties of each EKF are studied analytically and numerically with the the Observability Gramian matrices(OG)and the standard deviations for every estimated parameters.The analysis of observability perform intensive studies and reveal the intrinsic factors that affect the accuracy and stability of the parameters estimation of an uncooperative space target.Finally,the analytical and numerical results show the optimal composition of the kinematic&dynamic models and measurements.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647141)
文摘This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.
文摘The resource parameter estimation using stochastic finite element, geostatistics etc. is a key point on uncertainty, risk analysis, optimization [1-5] etc. In this view, the paper presents some consideration on: 1) Stochastic finite element estimation. The concept of random element is simplified as a stochastic finite element (SFE) taking into account a parallelepiped element with eight nodes in which are given the probability density functions (pdf) on its point supports. In this context it is shown: a—the stochastic finite element is a linear interpolator, related to the distributions given at each nodes;b—the distribution pdf in whatever point x ∈ V;c—the estimation of the mean value of Z(x);2) Volume integrals calculus;3) SFE in geostatistics approaches;4) SFE in PDE solution. Finally, some conclusions are presented underlying the importance of SFE
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.
基金supported by National Natural Science Foundation of China(Grant Nos.52279137,52009090).
文摘Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.
基金Sponsored by the National High Technology Research and Development Program of China(863 Program)(Grant No.2006AA04Z231)the National Science Foundation of Heilongjiang Province(Grant No.ZJG0709)"The 111 Project"(Grant No.B07018)
文摘Based on the study of passive articulated rover,a complete suspension kinematics model from wheel to inertial reference frame is presented,which uses D-H method of manipulator and presentation with Euler angle of pitch,roll and yaw.An improved contact model is adopted aimed at the loose and rough lunar terrain.Using this kinematics model and numerical continuous and discrete Newton's method with iterative factor,the numerical method for estimation of kinematical parameters of articulated rovers on loose and rough terrain is constructed.To demonstrate this numerical method,an example of two torsion bar rocker-bogie lunar rover with eight wheels is presented.Simulation results show that the numerical method for estimation of kinematical parameters of articulated rovers based on improved contact model can improve the precision of kinematical estimation on loose and rough terrain and decrease errors caused by contact models established based on general hypothesis.
基金supported by the National Natural Science Foundation of China(61431020,61571434)
文摘Underwater target localization and parameters(azimuth and range) estimation by the method of utilizing explosions as underwater sound sources are described in this paper.The narrow beam reverberation model of the target echo signal is researched to estimate the target azimuth in reverberation background.Estimation errors of target azimuth and range are studied and proved to approximately meet Gauss distribution.Then the variance formula of target range error is deduced.Simulation experiments are applied to research the target range error and its standard deviation,and a series of measures to improve the estimation accuracy of target range are proposed.It is confirmed by the data processing results of simulations and lake experiments that the proposed method can accurately locate underwater target at a long distance on the condition of a certain underwater explosion range error.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62403150)the Innovation Project of Guangxi Graduate Education (Grant No. YCSW2024129)the Guangxi Science and Technology Base and Talent Project (Grant No. Guike AD23026208)。
文摘The cutoff frequency is one of the crucial parameters that characterize the environment. In this paper, we estimate the cutoff frequency of the Ohmic spectral density by applying the π-pulse sequences(both equidistant and optimized)to a quantum probe coupled to a bosonic environment. To demonstrate the precision of cutoff frequency estimation, we theoretically derive the quantum Fisher information(QFI) and quantum signal-to-noise ratio(QSNR) across sub-Ohmic,Ohmic, and super-Ohmic environments, and investigate their behaviors through numerical examples. The results indicate that, compared to the equidistant π-pulse sequence, the optimized π-pulse sequence significantly shortens the time to reach maximum QFI while enhancing the precision of cutoff frequency estimation, particularly in deep sub-Ohmic and deep super-Ohmic environments.
文摘To characterize the clutter spectrum center-shift and spread of airborne radar caused by the platform motion, a novel Doppler Distributed Clutter (DDC) model is proposed to describe the clutter covariance matrix in temporal domain. Based on this parametric model, maximum likelihood, subspace based method and other super- resolution methods are introduced into the Doppler parameters estimation, and more excellent performance is obtained than with the conventional approaches in frequency domain. The theoretical derivation and real experimental results are also provided to validate this novel model and methods of parameter estimating.
基金Supported by the National Natural Science Foundation of China (60804027, 61064003) and Fuzhou University Research Foundation (FZU-02335, 600338 and 600567).
文摘Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.
基金Project(40144018)supported by the National Natural Science Foundation of China
文摘The method of condition number is commonly used to diagnose a normal matrix N whether it is ill conditioned state or not.For its shortcoming,a method to measure multi collinearity of a matrix was put forward.The method is that implement Gram Schmidt orthogonalizing process to column vectors of a design matrix A(αl),then calculate the norms of every vector before and after orthogonalization process and their corresponding ratio,and use the minimum ratio among the group of ratios to measure the multi collinearity of A.According to the corresponding relationship between the multi collinearity and the ill conditioned state of a matrix,the method also studies and offers reference indexes weighing the ill conditioned state of a matrix based on the relative norm.The remarkable characteristics of the method are that the measure of multi collinearity has idiographic geometry meaning and clear lower and upper limit,the size of the measure reflects the multi collinearity of column vectors objectively.It is convenient to study the reason that results in the matrix being multi collinearity and to put forward solving plan according to the method which is summarized as the method of minimum norm and abbreviated as F method.
文摘One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sensing data. Using remote sensing image and the inventory data from 2 compartments in northeast Florida, U.S.A., this paper explored the correlation between forest stand parameters and Landsat TM spectral digital number (DN) value. Results showed that less than 50% of the total variance could be explained by linear regression models with only either a single band or such vegetation indices as vegetation index (VI) or normalized difference vegetation index (NDVI) as predicators. In consequence, multi-linear regression models which synthesized more predicators were introduced to estimate forest parameters. Regression results were tested in terms of the other group of data, and verification showed a better capability of explaining over 75% variance except for forest density. The weakness and further improvement of prediction models were also discussed in the article. This paper is expected to provide a better understanding of the relationship between TM spectral and forest characteristics
文摘An LMS-like algorithm is applied for estimating the time-varying parameter theta-n in the linear model y(n) = phi-n-tau-theta-n + upsilon-n, which is general in the sense that none of the probabilistic properties such as stationarity, Markov property, independence and ergodicity is imposed on any of the processes {y(n)}, {phi-n}, {theta-n} and {upsilon-n}. It is shown that the alpha-th moment of the estimation error is of order of the alpha-th moment of the observation noise and the parameter variation w(n) change in equivalence theta-n - theta-n-1.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.