Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficien...Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.展开更多
This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OF...This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.展开更多
This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each mo...This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.展开更多
Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mizati...Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.展开更多
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio...In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.展开更多
Due to the extraordinary advantages,un-manned aerial vehicle(UAV)can be utilized as aerial base station(BS)to provide temporary and on-demand wireless connections for user equipments in the cover-age area.This article...Due to the extraordinary advantages,un-manned aerial vehicle(UAV)can be utilized as aerial base station(BS)to provide temporary and on-demand wireless connections for user equipments in the cover-age area.This article specifically considers the UAV-enabled orthogonal frequency division multiple access(OFDMA)wireless communication network.Consid-ering a practical scenario,a joint resource allocation and trajectory design optimization problem with the constraints on UAV mobility,limited total resource and backhaul link rate has been formulated,which aims to maximize the minimum achievable average rate of the users.To tackle the coupling and non-convexity of the proposed problem,an efficient opti-mization algorithm has been proposed based on alter-nating optimization,successive convex approximation and introducing slack variable techniques.Simulation results illustrate that the proposed optimization algo-rithm can effectively improve the system performance.Also,the numerical results unveil that joint optimiza-tion is superior to baseline schemes.展开更多
Broadleaf-Korean pine forests exhibit high species richness and distinctive species composition, which are currently becoming more dominant among natural forests in Changbai Mountains of northeastern China. Understand...Broadleaf-Korean pine forests exhibit high species richness and distinctive species composition, which are currently becoming more dominant among natural forests in Changbai Mountains of northeastern China. Understanding the ecological process of restored vegetation is quite important for ecosystem reconstruction. Distinguishing stand development stages and analyzing the dynamic spatial patterns could provide insights into significant community coexistence mechanisms. In the present study, eight permanent study areas were established according to the substituting space for time method in Changbai Mountains of north-eastern China. The optimal division method was used to quantify the successional series into different stand development stages, and the point pattern analysis method(L(r) function) was used to analyse the dynamic changes in spatial patterns and interspecific associations. Our results suggested that:(1) The stand development process was divided into five stages: the first three stages were poplar-birch secondary forests in different stages of recovery, the fourth stage was thespruce-fir mixed forest, and the last stage was the primary broadleaf-Korean pine forest;(2) The spatial pattern showed an aggregated distribution at a small scale and changed to a random distribution as the scale increased in poplar-birch secondary forests, but the spatial pattern appeared to be randomly distributed in spruce-fir mixed forest and broadleafKorean pine forest;(3) The interspecific associations between pioneer species and climax species changed from negative to positive among the different stand stages, and environmental resources were shared among these species. Interspecific differences in shade tolerance among the tree species were key determinants of forest dynamics and structure. Our study is vital to the understanding of the forest development;thus, the spatial change features should receive greater attention when forest management is being planned and restoration strategies are being developed for the Changbai Mountains.展开更多
基金This study was co-supported by stable funding from the National Key Laboratory of Aerofoil and Grille Aerodynamics,China.
文摘Near-space airship is a frontier and hotspot in current military research and development,and the near-space composite propeller is the key technology for its development.In order to obtain higher aerodynamic efficiency at an altitude of 22 km,a certain near-space composite propeller is designed as a long and slender aerodynamic shape with a 10 m diameter,which brings many challenges to the composite structure design.The initial design is obtained by the composite structure variable stiffness design method using based on fixed region division blending model.However,it weighs 23.142 kg,exceeding the required 20 kg.In order to meet the structural design requirements of the propeller,a variable stiffness design method using the adaptive region division blending model is proposed in this paper.Compared with the methods using the fixed region division blending model,this method optimizes region division,stacking thickness and stacking sequence in a single level,considering the coupling effect among them.Through a more refined region division,this method can provide a more optimal design for composite tapered structures.Additionally,to improve the efficiency of optimization subjected to manufacturing constraints,a hierarchical penalty function is proposed to quickly filter out the solutions that do not meet manufacturing constraints.The above methods combined with a Genetic Algorithm(GA)using specific encoding are adopted to optimize the near-space composite propeller.The optimal design of the structure weighs 18.831 kg,with all manufacturing constraints and all structural response constraints being satisfied.Compared with the initial design,the optimal design has a more refined region division,and achieves a weight reduction of 18.6%.This demonstrates that a refined region division can significantly improve the mechanical performance of the composite tapered structure.
基金the National Natural Science Foundation of China (Nos. 60332030 and 60625103)the Science and Technology Commission of Shanghai Municipality (STCSM) (No. 05DZ22102)the National High Technology Research and Development Program(863) of China (No. 2007AA01Z237)
文摘This paper deals with optimal training design and placement over multiple orthogonal frequency division multiplexing(OFDM) symbols for the least squares(LS) channel estimation in multiple-input multipleoutput(MIMO) OFDM systems.First,the optimal pilot sequences over multiple OFDM symbols are derived by co-cyclic Jacket matrices based on the minimum mean square error(MSE) of the LS channel estimation.Then,an enhanced channel estimation method using sliding window is proposed to improve further the performance for the optimal pilot sequences in fast-varying channels.Simulation results show that the enhancedmethod can efficiently improve the performances for the optimal pilot sequences over two and four OFDM symbols,especially in fast-varying channels.
文摘This paper designs a simulation experiment model of the overall structure of time-division multiplexing digital optimal frequency band transmission system based on MATLAB simulation platform. The parameters of each module in the simulation model are set. The working process and performance of the time-division multiplexing digital optimal band transmission system are simulated. The simulation results show that the digital optimal band transmission system achieves the best transmission receiving conditions and performance, and the designed time-division multiplexing optimal digital band transmission simulation system achieves its functions. The research in this paper will help to improve the level of digital communication technology and to understand the structure of time-division multiplexing digital optimal band transmission system.
基金Supported by National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2015ZX04003004)
文摘Existing linkage-optimization methods are designed for mechanical presses; few can be directly used for servo presses, so development of the servo press is limited. Based on the complementarity of linkage opti- mization and motion planning, a phase-division-based linkage-optimization model for a drawing servo press is established. Considering the motion-planning principles of a drawing servo press, and taking account of work rating and efficiency, the constraints of the optimization model are constructed. Linkage is optimized in two modes: use of either constant eccentric speed or constant slide speed in the work segments. The performances of optimized link- ages are compared with those of a mature linkage SL4- 2000A, which is optimized by a traditional method. The results show that the work rating of a drawing servo press equipped with linkages optimized by this new method improved and the root-mean-square torque of the servo motors is reduced by more than 10%. This research pro- vides a promising method for designing energy-saving drawing servo presses with high work ratings.
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金supported by the Aeronautical Science Foundation of China(No.20151067003)。
文摘In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.
基金supported by Project funded in part by China Postdoctoral Science Foundation(No.2021MD703980)in part by the National Natural Science Foundation of China(No.61901502).
文摘Due to the extraordinary advantages,un-manned aerial vehicle(UAV)can be utilized as aerial base station(BS)to provide temporary and on-demand wireless connections for user equipments in the cover-age area.This article specifically considers the UAV-enabled orthogonal frequency division multiple access(OFDMA)wireless communication network.Consid-ering a practical scenario,a joint resource allocation and trajectory design optimization problem with the constraints on UAV mobility,limited total resource and backhaul link rate has been formulated,which aims to maximize the minimum achievable average rate of the users.To tackle the coupling and non-convexity of the proposed problem,an efficient opti-mization algorithm has been proposed based on alter-nating optimization,successive convex approximation and introducing slack variable techniques.Simulation results illustrate that the proposed optimization algo-rithm can effectively improve the system performance.Also,the numerical results unveil that joint optimiza-tion is superior to baseline schemes.
基金supported by the National Natural Science Foundation of China (Grant No. 31400540, 31300538)
文摘Broadleaf-Korean pine forests exhibit high species richness and distinctive species composition, which are currently becoming more dominant among natural forests in Changbai Mountains of northeastern China. Understanding the ecological process of restored vegetation is quite important for ecosystem reconstruction. Distinguishing stand development stages and analyzing the dynamic spatial patterns could provide insights into significant community coexistence mechanisms. In the present study, eight permanent study areas were established according to the substituting space for time method in Changbai Mountains of north-eastern China. The optimal division method was used to quantify the successional series into different stand development stages, and the point pattern analysis method(L(r) function) was used to analyse the dynamic changes in spatial patterns and interspecific associations. Our results suggested that:(1) The stand development process was divided into five stages: the first three stages were poplar-birch secondary forests in different stages of recovery, the fourth stage was thespruce-fir mixed forest, and the last stage was the primary broadleaf-Korean pine forest;(2) The spatial pattern showed an aggregated distribution at a small scale and changed to a random distribution as the scale increased in poplar-birch secondary forests, but the spatial pattern appeared to be randomly distributed in spruce-fir mixed forest and broadleafKorean pine forest;(3) The interspecific associations between pioneer species and climax species changed from negative to positive among the different stand stages, and environmental resources were shared among these species. Interspecific differences in shade tolerance among the tree species were key determinants of forest dynamics and structure. Our study is vital to the understanding of the forest development;thus, the spatial change features should receive greater attention when forest management is being planned and restoration strategies are being developed for the Changbai Mountains.