Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th...Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.展开更多
This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the r...This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction.展开更多
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition...The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm impro...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.展开更多
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat...Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.展开更多
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
With growing concerns over environmental issues,ethylene manufacturing is shifting from a sole focus on economic benefits to an additional consideration of environmental impacts.The operation of the thermal cracking f...With growing concerns over environmental issues,ethylene manufacturing is shifting from a sole focus on economic benefits to an additional consideration of environmental impacts.The operation of the thermal cracking furnace in ethylene manufacturing determines not only the profitability of an ethylene plant but also the carbon emissions it releases.While multi-objective optimization of the thermal cracking furnace to balance profit with environmental impact is an effective solution to achieve green ethylene man-ufacturing,it carries a high computational demand due to the complex dynamic processes involved.In this work,artificial intelligence(AI)is applied to develop a novel hybrid model based on physically consistent machine learning(PCML).This hybrid model not only reduces the computational demand but also retains the interpretability and scalability of the model.With this hybrid model,the computational demand of the multi-objective dynamic optimization is reduced to 77 s.The optimization results show that dynamically adjusting the operating variables with coke formation can effectively improve profit and reduce CO_(2)emissions.In addition,the results from this study indicate that sacrificing 28.97%of the annual profit can significantly reduce the annual CO_(2)emissions by 42.89%.The key findings of this study highlight the great potential for green ethylene manufacturing based on AI through modeling and optimization approaches.This study will be important for industrial practitioners and policy-makers.展开更多
Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Opt...Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.展开更多
This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the tem...This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm.展开更多
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op...Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization.展开更多
The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the S...The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.展开更多
Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by...Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.展开更多
In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based bou...In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based boundary intersection(PBI)are distributed parallelly while those based on the normal boundary intersection(NBI)are distributed radially in a conical shape in the objective space.To improve the problem-solving effectiveness of multi-objective optimization algorithms in engineering applications,this paper addresses the improvement of the Collaborative Decomposition(CoD)method,a multi-objective decomposition technique that integrates PBI and NBI,and combines it with the Elephant Clan Optimization Algorithm,introducing the Collaborative Decomposition Multi-objective Improved Elephant Clan Optimization Algorithm(CoDMOIECO).Specifically,a novel subpopulation construction method with adaptive changes following the number of iterations and a novel individual merit ranking based onNBI and angle are proposed.,enabling the creation of subpopulations closely linked to weight vectors and the identification of diverse individuals within them.Additionally,new update strategies for the clan leader,male elephants,and juvenile elephants are introduced to boost individual exploitation capabilities and further enhance the algorithm’s convergence.Finally,a new CoD-based environmental selection method is proposed,introducing adaptive dynamically adjusted angle coefficients and individual angles on corresponding weight vectors,significantly improving both the convergence and distribution of the algorithm.Experimental comparisons on the ZDT,DTLZ,and WFG function sets with four benchmark multi-objective algorithms—MOEA/D,CAMOEA,VaEA,and MOEA/D-UR—demonstrate that CoDMOIECO achieves superior performance in both convergence and distribution.展开更多
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of...The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approache...Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.展开更多
The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studi...The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
基金Project 50574091 supported by the National Natural Science Foundation of China
文摘Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.
基金Publication costs are funded by the Ministry of Science and Technology, Taiwan, underGrant Numbers MOST 110-2221-E-153-010.
文摘This paper proposes a hybrid multi-object optimization method integrating a uniform design,an adaptive network-based fuzzy inference system(ANFIS),and a multi-objective particle swarm optimizer(MOPSO)to optimize the rigid tapping parameters and minimize the synchronization errors and cycle times of computer numerical control(CNC)machines.First,rigid tapping parameters and uniform(including 41-level and 19-level)layouts were adopted to collect representative data for modeling.Next,ANFIS was used to build the model for the collected 41-level and 19-level uniform layout experiment data.In tapping center machines,the synchronization errors and cycle times are important consid-erations,so these two objects were used to build the ANFIS models.Then,a MOPSO algorithm was used to search for the optimal parameter combinations for the two ANFIS models simultaneously.The experimental results showed that the proposed method obtains suitable parameter values and optimal parameter combinations compared with the nonsystematic method.Additionally,the optimal parameter combination was used to optimize existing CNC tools during the commissioning process.Adjusting the proportional and integral gains of the spindle could improve resistance to deformation during rigid tapping.The posi-tion gain and prefeedback coefficient can reduce the synchronization errors significantly,and the acceleration and deceleration times of the spindle affect both the machining time and synchronization errors.The proposed method can quickly and accurately minimize synchronization errors from 107 to 19.5 pulses as well as the processing time from 3,600 to 3,248 ms;it can also shorten the machining time significantly and reduce simultaneous errors to improve tapping yield,there-by helping factories achieve carbon reduction.
基金supported by National Natural Science Foundations of China(nos.12271326,62102304,61806120,61502290,61672334,61673251)China Postdoctoral Science Foundation(no.2015M582606)+2 种基金Industrial Research Project of Science and Technology in Shaanxi Province(nos.2015GY016,2017JQ6063)Fundamental Research Fund for the Central Universities(no.GK202003071)Natural Science Basic Research Plan in Shaanxi Province of China(no.2022JM-354).
文摘The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance.
基金supported by the Open Fund of Guangxi Key Laboratory of Building New Energy and Energy Conservation(Project Number:Guike Energy 17-J-21-3).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm improvement.To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable energy,while simultaneously enhancing user satisfaction on the demand side,this paper introduces an improvedmultiobjective Grey Wolf Optimizer based on Cauchy variation.The proposed approach incorporates a Cauchy variation strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming trapped in local optima.At the same time,adoptingmultiple energy storage methods to improve the consumption rate of renewable energy.Subsequently,under different energy balance orders,themulti-objective particle swarmalgorithm,multi-objective grey wolf optimizer,and Cauchy’s variant of the improvedmulti-objective grey wolf optimizer are used for example simulation,solving the Pareto solution set of the model and comparing.The analysis of the results reveals that,compared to the original optimizer,the improved optimizer decreases the daily cost by approximately 100 yuan,and reduces the energy abandonment rate to zero.Meanwhile,it enhances user satisfaction and ensures the stable operation of the micro-grid.
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
文摘Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance.
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
基金the financial support of the National Key Research and Development Program of China(2021YFE0112800)EU RISE project OPTIMAL(101007963).
文摘With growing concerns over environmental issues,ethylene manufacturing is shifting from a sole focus on economic benefits to an additional consideration of environmental impacts.The operation of the thermal cracking furnace in ethylene manufacturing determines not only the profitability of an ethylene plant but also the carbon emissions it releases.While multi-objective optimization of the thermal cracking furnace to balance profit with environmental impact is an effective solution to achieve green ethylene man-ufacturing,it carries a high computational demand due to the complex dynamic processes involved.In this work,artificial intelligence(AI)is applied to develop a novel hybrid model based on physically consistent machine learning(PCML).This hybrid model not only reduces the computational demand but also retains the interpretability and scalability of the model.With this hybrid model,the computational demand of the multi-objective dynamic optimization is reduced to 77 s.The optimization results show that dynamically adjusting the operating variables with coke formation can effectively improve profit and reduce CO_(2)emissions.In addition,the results from this study indicate that sacrificing 28.97%of the annual profit can significantly reduce the annual CO_(2)emissions by 42.89%.The key findings of this study highlight the great potential for green ethylene manufacturing based on AI through modeling and optimization approaches.This study will be important for industrial practitioners and policy-makers.
文摘Impinging jet arrays are extensively used in numerous industrial operations,including the cooling of electronics,turbine blades,and other high-heat flux systems because of their superior heat transfer capabilities.Optimizing the design and operating parameters of such systems is essential to enhance cooling efficiency and achieve uniform pressure distribution,which can lead to improved system performance and energy savings.This paper presents two multi-objective optimization methodologies for a turbulent air jet impingement cooling system.The governing equations are resolved employing the commercial computational fluid dynamics(CFD)software ANSYS Fluent v17.The study focuses on four controlling parameters:Reynolds number(Re),swirl number(S),jet-to-jet separation distance(Z/D),and impingement height(H/D).The effects of these parameters on heat transfer and impingement pressure distribution are investigated.Non-dominated Sorting Genetic Algorithm(NSGA-II)and Weighted Sum Method(WSM)are employed to optimize the controlling parameters for maximum cooling performance.The aim is to identify optimal design parameters and system configurations that enhance heat transfer efficiency while achieving a uniform impingement pressure distribution.These findings have practical implications for applications requiring efficient cooling.The optimized design achieved a 12.28%increase in convective heat transfer efficiency with a local Nusselt number of 113.05 compared to 100.69 in the reference design.Enhanced convective cooling and heat flux were observed in the optimized configuration,particularly in areas of direct jet impingement.Additionally,the optimized design maintained lower wall temperatures,demonstrating more effective thermal dissipation.
基金supported by the National Natural Science Foundation of China under Grant 52162050.
文摘This paper presents an improved virtual coupling train set(VCTS)operation control framework to deal with the lack of opti-mization of speed curves in the traditional techniques.The framework takes into account the temporary speed limit on the railway line and the communication delay between trains,and it uses a VCTS consisting of three trains as an experimental object.It creates the virtual coupling train tracking and control process by improving the driving strategy of the leader train and using the leader-follower model.The follower train uses the improved speed curve of the leader train as its speed refer-ence curve through knowledge migration,and this completes the multi-objective optimization of the driving strategy for the VCTS.The experimental results confirm that the deep reinforcement learning algorithm effectively achieves the optimization goal of the train driving strategy.They also reveal that the intrinsic curiosity module prioritized experience replay dueling double deep Q-network(ICM-PER-D3QN)algorithm outperforms the deep Q-network(DQN)algorithm in optimizing the driving strategy of the leader train.The ICM-PER-D3QN algorithm enhances the leader train driving strategy by an average of 57%when compared to the DQN algorithm.Furthermore,the particle swarm optimization(PSO)-based model predictive control(MPC)algorithm has also demonstrated tracking accuracy and further improved safety during VCTS operation,with an average increase of 37.7%in tracking accuracy compared to the traditional MPC algorithm.
基金funded by Researchers Supporting Programnumber(RSPD2024R809),King Saud University,Riyadh,Saudi Arabia.
文摘Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization.
基金Supported by National Natural Science Foundation of China(Grant No.2018YFB1703000)State Key Laboratory of Metal Extrusion and Forging Equipment TechnologyChina National Heavy Machinery Research Institute Co.,Ltd.(Grant No.B2408100.W19)。
文摘The solenoid switching valve(SSV)is the key control component of heavy equipment such as continuous casting machines.However,the incompatibility of structural parameters increases the opening and closing time of the SSV.Therefore,this study proposes an optimized design method for an SSV to improve its dynamic performance.First,a multi-physics field-coupling model of the SSV is built,and the effects of different structural parameters on the electromagnetic characteristics are analyzed.After identifying the key influencing parameters,second-order response surface models are established to efficiently predict the opening and closing time.Subsequently,based on the nondominated sorting genetic algorithmⅡ(NSGA-Ⅱ),multi-objective optimization is applied to obtain the Pareto optimal solution of the structural parameters under the double-voltage driving strategy.The structure of the solenoid and valve as well as the dynamic characteristics of the valve are improved.Compared with those before optimization,the optimization results show that the opening and closing time of the optimized SSV are reduced by 24.38%and 51.8%,respectively,and the volume is reduced by 19.7%.The research results and the influence of the solenoid structural parameters on the electromagnetic force provide significant guidance for the design of this type of valve.
基金Anhui Provincial Natural Science Foundation of China(2108085ME176)the Natural Science Foundation of China(52276043)。
文摘Double-wall effusion cooling coupled with thermal barrier coating(TBC)is an important way of thermal protection for gas turbine vanes and blades of next-generation aero-engine,and formation of discrete crater holes by TBC spraying is an approved design.To protect both metal and TBC synchronously,a recommended geometry of crater is obtained through a fully automatic multi-objective optimization combined with conjugate heat transfer simulation in this work.The length and width of crater(i.e.,L/D and W/D)were applied as design variables,and the area-averaged overall effectiveness of the metal and TBC surfaces(i.e.,Φ_(av) and τ_(av))were selected as objective functions.The optimization procedure consists of automated geometry and mesh generation,conjugate heat transfer simulation validated by experimental data and Kriging surrogated model.The results showed that the Φ_(av) and τ_(av) are successfully increased respectively by 9.1%and 6.0%through optimization.Appropriate enlargement of the width and length of the crater can significantly improve the film coverage effect,since that the beneficial anti-CRVP is enhanced and the harmful CRVP is weakened.
文摘In recent years,decomposition-based evolutionary algorithms have become popular algorithms for solving multi-objective problems in real-life scenarios.In these algorithms,the reference vectors of the Penalty-Based boundary intersection(PBI)are distributed parallelly while those based on the normal boundary intersection(NBI)are distributed radially in a conical shape in the objective space.To improve the problem-solving effectiveness of multi-objective optimization algorithms in engineering applications,this paper addresses the improvement of the Collaborative Decomposition(CoD)method,a multi-objective decomposition technique that integrates PBI and NBI,and combines it with the Elephant Clan Optimization Algorithm,introducing the Collaborative Decomposition Multi-objective Improved Elephant Clan Optimization Algorithm(CoDMOIECO).Specifically,a novel subpopulation construction method with adaptive changes following the number of iterations and a novel individual merit ranking based onNBI and angle are proposed.,enabling the creation of subpopulations closely linked to weight vectors and the identification of diverse individuals within them.Additionally,new update strategies for the clan leader,male elephants,and juvenile elephants are introduced to boost individual exploitation capabilities and further enhance the algorithm’s convergence.Finally,a new CoD-based environmental selection method is proposed,introducing adaptive dynamically adjusted angle coefficients and individual angles on corresponding weight vectors,significantly improving both the convergence and distribution of the algorithm.Experimental comparisons on the ZDT,DTLZ,and WFG function sets with four benchmark multi-objective algorithms—MOEA/D,CAMOEA,VaEA,and MOEA/D-UR—demonstrate that CoDMOIECO achieves superior performance in both convergence and distribution.
基金funded by the National Key Research and Development Program of China(2024YFE0106800)Natural Science Foundation of Shandong Province(ZR2021ME199).
文摘The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.52090081,52079068)the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04).
文摘Accurate determination of rock mass parameters is essential for ensuring the accuracy of numericalsimulations. Displacement back-analysis is the most widely used method;however, the reliability of thecurrent approaches remains unsatisfactory. Therefore, in this paper, a multistage rock mass parameterback-analysis method, that considers the construction process and displacement losses is proposed andimplemented through the coupling of numerical simulation, auto-machine learning (AutoML), andmulti-objective optimization algorithms (MOOAs). First, a parametric modeling platform for mechanizedtwin tunnels is developed, generating a dataset through extensive numerical simulations. Next, theAutoML method is utilized to establish a surrogate model linking rock parameters and displacements.The tunnel construction process is divided into multiple stages, transforming the rock mass parameterback-analysis into a multi-objective optimization problem, for which multi-objective optimization algorithmsare introduced to obtain the rock mass parameters. The newly proposed rock mass parameterback-analysis method is validated in a mechanized twin tunnel project, and its accuracy and effectivenessare demonstrated. Compared with traditional single-stage back-analysis methods, the proposedmodel decreases the average absolute percentage error from 12.73% to 4.34%, significantly improving theaccuracy of the back-analysis. Moreover, although the accuracy of back analysis significantly increaseswith the number of construction stages considered, the back analysis time is acceptable. This studyprovides a new method for displacement back analysis that is efficient and accurate, thereby paving theway for precise parameter determination in numerical simulations.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072156,52272366)Postdoctoral Foundation of China(Grant No.2020M682269).
文摘The spoke as a key component has a significant impact on the performance of the non-pneumatic tire(NPT).The current research has focused on adjusting spoke structures to improve the single performance of NPT.Few studies have been conducted to synergistically improve multi-performance by optimizing the spoke structure.Inspired by the concept of functionally gradient structures,this paper introduces a functionally gradient honeycomb NPT and its optimization method.Firstly,this paper completes the parameterization of the honeycomb spoke structure and establishes the numerical models of honeycomb NPTs with seven different gradients.Subsequently,the accuracy of the numerical models is verified using experimental methods.Then,the static and dynamic characteristics of these gradient honeycomb NPTs are thoroughly examined by using the finite element method.The findings highlight that the gradient structure of NPT-3 has superior performance.Building upon this,the study investigates the effects of key parameters,such as honeycomb spoke thickness and length,on load-carrying capacity,honeycomb spoke stress and mass.Finally,a multi-objective optimization method is proposed that uses a response surface model(RSM)and the Nondominated Sorting Genetic Algorithm-II(NSGA-II)to further optimize the functional gradient honeycomb NPTs.The optimized NPT-OP shows a 23.48%reduction in radial stiffness,8.95%reduction in maximum spoke stress and 16.86%reduction in spoke mass compared to the initial NPT-1.The damping characteristics of the NPT-OP have also been improved.The results offer a theoretical foundation and technical methodology for the structural design and optimization of gradient honeycomb NPTs.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.