We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensiv...We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.展开更多
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se...We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.展开更多
This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were iso...This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.展开更多
Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these i...Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.展开更多
Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for a...Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for analyzing the data of N-of-1 trials.This simulation study aimed to compare two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials.Methods:The simulated data of N-of-1 trials with different coefficients of autocorrelation,effect sizes and missing ratios are obtained by SAS 9.1 system.The missing values are filled with mean filling and regression filling respectively in the condition of different coefficients of autocorrelation,effect sizes and missing ratios by SPSS 25.0 software.Bayesian models are built to estimate the posterior means by Winbugs 14 software.Results:When the missing ratio is relatively small,e.g.5%,missing values have relatively little effect on the results.Therapeutic effects may be underestimated when the coefficient of autocorrelation increases and no filling is used.However,it may be overestimated when mean or regression filling is used,and the results after mean filling are closer to the actual effect than regression filling.In the case of moderate missing ratio,the estimated effect after mean filling is closer to the actual effect compared to regression filling.When a large missing ratio(20%)occurs,data missing can lead to significantly underestimate the effect.In this case,the estimated effect after regression filling is closer to the actual effect compared to mean filling.Conclusion:Data missing can affect the estimated therapeutic effects using Bayesian models in N-of-1 trials.The present study suggests that mean filling can be used under situation of missing ratio≤10%.Otherwise,regression filling may be preferable.展开更多
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, the Specialized Research Fund for State Key Laboratories。
文摘We combine gradient data from the Macao Science Satellite-1(MSS-1),CHAllenging Minisatellite Payload(CHAMP),Swarm-A,and Swarm-C satellites to develop a 110-degree lithospheric magnetic field model.We then comprehensively evaluate the performance of the model by power spectral comparisons,correlation analyses,sensitivity matrix assessments,and comparisons with existing lithospheric field models.Results showed that using near east–west gradient data from MSS-1 significantly enhances the model correlation in the spherical harmonic degree(N) range of 45–60 while also mitigating the decline in correlation at higher degrees(N > 60).Furthermore,the unique orbital characteristics of MSS-1 enable its gradient data to provide substantial contributions to modeling in the mid-to low-latitude regions.With continued data acquisition from MSS-1 and further optimization of data processing methods,the performance of the model is expected to improve.
文摘We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season.
基金financially supported by the National Natural Science Foundation of China(42250102,42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1)the Pre-research Project on Civil Aerospace Technologies funded by China National Space Administration(D020303)。
文摘This study presents preliminary results of tidal-induced magnetic field signals extracted from 9 months of data collected by the Macao Science Satellite-1(MSS-1) from November 2023 to July 2024. Tidal signals were isolated using sequential modeling techniques by subtracting non-tidal field model predictions from observed magnetic data. The extracted MSS-1 results show strong agreement with those from the Swarm and CryoSat satellites. MSS-1 effectively captures key large-scale tidal-induced magnetic anomalies, mainly due to its unique 41-degree low-inclination orbit, which provides wide coverage of local times. This finding underscores the strong potential of MSS-1 to recover high-resolution global tidal magnetic field models as more MSS-1 data become available.
基金supported by the National Natural Science Foundation of China(42250101)the Macao Foundation。
文摘Earth’s internal core and crustal magnetic fields,as measured by geomagnetic satellites like MSS-1(Macao Science Satellite-1)and Swarm,are vital for understanding core dynamics and tectonic evolution.To model these internal magnetic fields accurately,data selection based on specific criteria is often employed to minimize the influence of rapidly changing current systems in the ionosphere and magnetosphere.However,the quantitative impact of various data selection criteria on internal geomagnetic field modeling is not well understood.This study aims to address this issue and provide a reference for constructing and applying geomagnetic field models.First,we collect the latest MSS-1 and Swarm satellite magnetic data and summarize widely used data selection criteria in geomagnetic field modeling.Second,we briefly describe the method to co-estimate the core,crustal,and large-scale magnetospheric fields using satellite magnetic data.Finally,we conduct a series of field modeling experiments with different data selection criteria to quantitatively estimate their influence.Our numerical experiments confirm that without selecting data from dark regions and geomagnetically quiet times,the resulting internal field differences at the Earth’s surface can range from tens to hundreds of nanotesla(nT).Additionally,we find that the uncertainties introduced into field models by different data selection criteria are significantly larger than the measurement accuracy of modern geomagnetic satellites.These uncertainties should be considered when utilizing constructed magnetic field models for scientific research and applications.
基金supported by the National Natural Science Foundation of China (No.81973705).
文摘Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for analyzing the data of N-of-1 trials.This simulation study aimed to compare two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials.Methods:The simulated data of N-of-1 trials with different coefficients of autocorrelation,effect sizes and missing ratios are obtained by SAS 9.1 system.The missing values are filled with mean filling and regression filling respectively in the condition of different coefficients of autocorrelation,effect sizes and missing ratios by SPSS 25.0 software.Bayesian models are built to estimate the posterior means by Winbugs 14 software.Results:When the missing ratio is relatively small,e.g.5%,missing values have relatively little effect on the results.Therapeutic effects may be underestimated when the coefficient of autocorrelation increases and no filling is used.However,it may be overestimated when mean or regression filling is used,and the results after mean filling are closer to the actual effect than regression filling.In the case of moderate missing ratio,the estimated effect after mean filling is closer to the actual effect compared to regression filling.When a large missing ratio(20%)occurs,data missing can lead to significantly underestimate the effect.In this case,the estimated effect after regression filling is closer to the actual effect compared to mean filling.Conclusion:Data missing can affect the estimated therapeutic effects using Bayesian models in N-of-1 trials.The present study suggests that mean filling can be used under situation of missing ratio≤10%.Otherwise,regression filling may be preferable.