期刊文献+
共找到629篇文章
< 1 2 32 >
每页显示 20 50 100
Prediction of total nitrogen in water based on UV spectroscopy and Bayesian optimized least squares support vector machine
1
作者 ZHENG Peichao YANG Qin +3 位作者 LI Chenglin YIN Xukun WANG Jinmei GUO Lianbo 《Optoelectronics Letters》 2025年第11期698-704,共7页
The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei... The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance. 展开更多
关键词 Bayesian optimization EUTROPHICATION total nitrogen tn bayesian optimized least squares support vector machine lssvm least squares support vector machine assessing surface water water quality total nitrogen
原文传递
Non-negative least squares variance component estimation of mixed additive and multiplicative random error model
2
作者 Hao Xiao Leyang Wang 《Geodesy and Geodynamics》 2025年第5期617-623,共7页
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c... In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE. 展开更多
关键词 Mixed additive and multiplicative random error model Stochastic model Non-negative least squares variance component estimation
原文传递
Study of the nuclear mass model by sequential least squares programming
3
作者 Hang Yang Cun-Yu Chen +2 位作者 Xiao-Yu Xu Han-Kui Wang You-Bao Wang 《Nuclear Science and Techniques》 2025年第7期204-212,共9页
Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ... Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics. 展开更多
关键词 Nuclear mass model Binding energy Magic nuclei Sequential least squares algorithm
在线阅读 下载PDF
Application of Least Squares Support Vector Machine for Regression to Reliability Analysis 被引量:22
4
作者 郭秩维 白广忱 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第2期160-166,共7页
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functiona... In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for... 展开更多
关键词 mechanism design of spacecraft support vector machine for regression least squares support vector machine for regression Monte Carlo method RELIABILITY implicit performance function
原文传递
ONLINE PARSIMONIOUS LEAST SQUARES SUPPORT VECTOR REGRESSION AND ITS APPLICATION 被引量:2
5
作者 赵永平 孙健国 王健康 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期280-287,共8页
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim... A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy. 展开更多
关键词 support vector machines SENSORS least squares analytical redundancy aeroengines
在线阅读 下载PDF
NOVEL WEIGHTED LEAST SQUARES SUPPORT VECTOR REGRESSION FOR THRUST ESTIMATION ON PERFORMANCE DETERIORATION OF AERO-ENGINE 被引量:2
6
作者 苏伟生 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期25-32,共8页
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ... A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration 展开更多
关键词 intelligent engine control least squares support vector machine performance deterioration
在线阅读 下载PDF
An Effective Multiple Model Least Squares Method in Tracking of a Maneuvering Target 被引量:3
7
作者 杨位钦 贾朝晖 《Journal of Beijing Institute of Technology》 EI CAS 1995年第1期35+29-34,共7页
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki... A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent. 展开更多
关键词 Kalman filters tracking/recursive least squares maneuvering target polynomial model forgetting factor
在线阅读 下载PDF
BOOSTING SPARSE LEAST SQUARES SUPPORT VECTOR REGRESSION (BSLSSVR) AND ITS APPLICATION TO THRUST ESTIMATION 被引量:2
8
作者 赵永平 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期254-261,共8页
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ... In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰. 展开更多
关键词 least squares support vector machines direct thrust control boosting technique
在线阅读 下载PDF
Semi-supervised least squares support vector machine algorithm:application to offshore oil reservoir 被引量:1
9
作者 罗伟平 李洪奇 石宁 《Applied Geophysics》 SCIE CSCD 2016年第2期406-415,421,共11页
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th... At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area. 展开更多
关键词 Semi-supervised learning least squares support vector machine seismic attributes reservoir prediction
在线阅读 下载PDF
A stabilized least-squares imaging condition with structure constraints
10
作者 刘国昌 陈小宏 +1 位作者 宋建勇 芮振华 《Applied Geophysics》 SCIE CSCD 2012年第4期459-467,496,共10页
Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging ampli... Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers. 展开更多
关键词 Imaging condition least squares plane wave construction operator local event slopes
在线阅读 下载PDF
Constrained least squares algorithm for channel vector estimation in 2-D RAKE receiver
11
作者 王建明 赵春明 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期1-4,共4页
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and... Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver. 展开更多
关键词 2-D RAKE receiver channel estimation subspace decomposition constrained least squares
在线阅读 下载PDF
Based on Partial Least-squares Regression to Build up and Analyze the Model of Rice Evapotranspiration
12
作者 ZHAO Chang shan,FU Hong,HUANG Bu hai (Northeast Agricultural University,Harbin,Heilongjiang,150030,PRC) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2003年第1期1-8,共8页
During the course of calculating the rice evapotranspiration using weather factors,we often find that some independent variables have multiple correlation.The phenomena can lead to the traditional multivariate regress... During the course of calculating the rice evapotranspiration using weather factors,we often find that some independent variables have multiple correlation.The phenomena can lead to the traditional multivariate regression model which based on least square method distortion.And the stability of the model will be lost.The model will be built based on partial least square regression in the paper,through applying the idea of main component analyze and typical correlation analyze,the writer picks up some component from original material.Thus,the writer builds up the model of rice evapotranspiration to solve the multiple correlation among the independent variables (some weather factors).At last,the writer analyses the model in some parts,and gains the satisfied result. 展开更多
关键词 Partial least squares Regression EVAPOTRANSPIRATION
在线阅读 下载PDF
Unstable unsteady aerodynamic modeling based on least squares support vector machines with general excitation 被引量:10
13
作者 Senlin CHEN Zhenghong GAO +2 位作者 Xinqi ZHU Yiming DU Chao PANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2499-2509,共11页
Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hy... Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach. 展开更多
关键词 Aerodynamics models Forced vibration Input design least squares support vector machines Nonlinear system System identification Unsteady aerodynamics
原文传递
Modeling of Isomerization of C_8 Aromatics by Online Least Squares Support Vector Machine 被引量:7
14
作者 李丽娟 苏宏业 褚建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期437-444,共8页
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling... The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable. 展开更多
关键词 least squares support vector machine multi-variable ONLINE SPARSENESS ISOMERIZATION
在线阅读 下载PDF
Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature 被引量:7
15
作者 Mohammad Mesbah Ebrahim Soroush Mashallah Rezakazemi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1238-1248,共11页
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.... Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model. 展开更多
关键词 Hydrate formation temperature(HFT) Natural gas Sour gases least squares support vector machine Outlier diagnostics Leverage approach
在线阅读 下载PDF
Near-infrared spectra combined with partial least squares for pH determination of toothpaste of different brands 被引量:6
16
作者 Yong Nian Ni Wei Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2011年第12期1473-1476,共4页
Near-infrared spectroscopy(NIR),which is generally used for online monitoring of the food analysis and production process, was applied to determine the internal quality of toothpaste samples.It is acknowledged that ... Near-infrared spectroscopy(NIR),which is generally used for online monitoring of the food analysis and production process, was applied to determine the internal quality of toothpaste samples.It is acknowledged that the spectra can be significantly influenced by non-linearities introduced by light scatter,therefore,four data preprocessing methods,including off-set correction, 1st-derivative,standard normal variate(SNV) and multiplicative scatter correction(MSC),were employed before the date analysis. The multivariate calibration model of partial least squares(PLS) was established and then was used to predict the pH values of the toothpaste samples of different brand.The results showed that the spectral date processed by MSC was the best one for predicting the pH value of the toothpaste samples. 展开更多
关键词 TOOTHPASTE NIR spectroscopy Partial least squares PREPROCESSING pH value
原文传递
Discrimination of Transgenic Rice Based on Near Infrared Reflectance Spectroscopy and Partial Least Squares Regression Discriminant Analysis 被引量:7
17
作者 ZHANG Long WANG Shan-shan +2 位作者 DING Yan-fei PAN Jia-rong ZHU Cheng 《Rice science》 SCIE CSCD 2015年第5期245-249,共5页
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi... Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice. 展开更多
关键词 near infrared reflectance spectroscopy genetically-modified food regulation gene protein gene partial least squares regression discrimiant analysis
在线阅读 下载PDF
Correlation-weighted least squares residual algorithm for RAIM 被引量:7
18
作者 Dan SONG Chuang SHI +2 位作者 Zhipeng WANG Cheng WANG Guifei JING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第5期1505-1516,共12页
The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large... The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition. 展开更多
关键词 Correlation analysis Fault detection least squares residual(LSR)algorithm Receiver autonomous integrity monitoring(RAIM) SLOPE
原文传递
Least Squares Evaluations for Form and Profile Errors of Ellipse Using Coordinate Data 被引量:5
19
作者 LIU Fei XU Guanghua +2 位作者 LIANG Lin ZHANG Qing LIU Dan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1020-1028,共9页
To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate... To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate data. Two error indicators for defining ellipticity are discussed, namely the form error and the profile error, and the difference between both is considered as the main parameter for evaluating machining quality of surface and profile. Because the form error and the profile error rely on different evaluation benchmarks, the major axis and the foci rather than the centre of an ellipse are used as the evaluation benchmarks and can accurately evaluate a tolerance range with the separated form error and profile error of workpiece. Additionally, an evaluation program based on the LS model is developed to extract the form error and the profile error of the elliptic section, which is well suited for separating the two errors by a standard program. Finally, the evaluation method about the form and profile errors of the ellipse is applied to the measurement of skirt line of the piston, and results indicate the effectiveness of the evaluation. This approach provides the new evaluation indicators for the measurement of form and profile errors of ellipse, which is found to have better accuracy and can thus be used to solve the difficult of the measurement and evaluation of the piston in industrial production. 展开更多
关键词 ELLIPSE form Error profile error least squares method PISTON
在线阅读 下载PDF
Parameter identification and pressure control of dynamic system in shield tunneling using least squares method 被引量:10
20
作者 LI Shou-ju CAO Li-juan +1 位作者 SHANGGUAN Zi-chang LIU Bo 《Journal of Coal Science & Engineering(China)》 2010年第3期256-261,共6页
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a... An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results. 展开更多
关键词 parameter identification least squares method state equation shield tunneling
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部