The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herei...The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.展开更多
In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance c...In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.展开更多
Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squ...Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.展开更多
In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functiona...In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for...展开更多
A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response tim...A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.展开更多
A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using ...A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of ...In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.展开更多
At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict th...At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.展开更多
Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging ampli...Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.展开更多
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
During the course of calculating the rice evapotranspiration using weather factors,we often find that some independent variables have multiple correlation.The phenomena can lead to the traditional multivariate regress...During the course of calculating the rice evapotranspiration using weather factors,we often find that some independent variables have multiple correlation.The phenomena can lead to the traditional multivariate regression model which based on least square method distortion.And the stability of the model will be lost.The model will be built based on partial least square regression in the paper,through applying the idea of main component analyze and typical correlation analyze,the writer picks up some component from original material.Thus,the writer builds up the model of rice evapotranspiration to solve the multiple correlation among the independent variables (some weather factors).At last,the writer analyses the model in some parts,and gains the satisfied result.展开更多
Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hy...Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach.展开更多
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling...The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.展开更多
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time....Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.展开更多
Near-infrared spectroscopy(NIR),which is generally used for online monitoring of the food analysis and production process, was applied to determine the internal quality of toothpaste samples.It is acknowledged that ...Near-infrared spectroscopy(NIR),which is generally used for online monitoring of the food analysis and production process, was applied to determine the internal quality of toothpaste samples.It is acknowledged that the spectra can be significantly influenced by non-linearities introduced by light scatter,therefore,four data preprocessing methods,including off-set correction, 1st-derivative,standard normal variate(SNV) and multiplicative scatter correction(MSC),were employed before the date analysis. The multivariate calibration model of partial least squares(PLS) was established and then was used to predict the pH values of the toothpaste samples of different brand.The results showed that the spectral date processed by MSC was the best one for predicting the pH value of the toothpaste samples.展开更多
Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi...Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.展开更多
The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large...The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.展开更多
To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate...To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate data. Two error indicators for defining ellipticity are discussed, namely the form error and the profile error, and the difference between both is considered as the main parameter for evaluating machining quality of surface and profile. Because the form error and the profile error rely on different evaluation benchmarks, the major axis and the foci rather than the centre of an ellipse are used as the evaluation benchmarks and can accurately evaluate a tolerance range with the separated form error and profile error of workpiece. Additionally, an evaluation program based on the LS model is developed to extract the form error and the profile error of the elliptic section, which is well suited for separating the two errors by a standard program. Finally, the evaluation method about the form and profile errors of the ellipse is applied to the measurement of skirt line of the piston, and results indicate the effectiveness of the evaluation. This approach provides the new evaluation indicators for the measurement of form and profile errors of ellipse, which is found to have better accuracy and can thus be used to solve the difficult of the measurement and evaluation of the piston in industrial production.展开更多
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a...An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.展开更多
基金supported by the National Natural Science Foundation of China(Nos.32171627 and 62105252)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202200602)the Hangzhou Science and Technology Development Project(No.202204T04).
文摘The total nitrogen(TN)is a major factor contributing to eutrophication and is a crucial parameter in assessing surface water quality.Accurate and rapid methods are crucial for determining the TN content in water.Herein,a fast,highly sensitive,and pollution-free approach is proposed,which combines ultraviolet(UV)absorption spectroscopy with Bayesian optimized least squares support vector machine(LSSVM)for detecting TN content in water.Water samples collected from sampling points near the Yangtze River basin in Chongqing of China were analyzed using national standard methods to measure TN content as reference values.The prediction of TN content in water was achieved by integrating the UV absorption spectra of water samples with LSSVM.To make the model quickly and accurately select the optimal parameters to improve the accuracy of the prediction model,the Bayesian optimization(BO)algorithm was used to optimize the parameters of the LSSVM.Results show that the prediction model performs well in predicting TN concentration,with a high coefficient of prediction determination(R^(2)=0.9413)and a low root mean square error of prediction(RMSE=0.0779 mg/L).Comparative analysis with previous studies indicates that the model used in this paper achieves lower prediction errors and superior predictive performance.
基金supported by the National Natural Science Foundation of China(No.42174011)。
文摘In the variance component estimation(VCE)of geodetic data,the problem of negative VCE is likely to occur.In the ordinary additive error model,there have been related studies to solve the problem of negative variance components.However,there is still no related research in the mixed additive and multiplicative random error model(MAMREM).Based on the MAMREM,this paper applies the nonnegative least squares variance component estimation(NNLS-VCE)algorithm to this model.The correlation formula and iterative algorithm of NNLS-VCE for MAMREM are derived.The problem of negative variance in VCE for MAMREM is solved.This paper uses the digital simulation example and the Digital Terrain Mode(DTM)to prove the proposed algorithm's validity.The experimental results demonstrated that the proposed algorithm can effectively correct the VCE in MAMREM when there is a negative VCE.
基金supported by the National Natural Science Foundation of China(Nos.U2267205 and 12475124)a ZSTU intramural grant(22062267-Y)Excellent Graduate Thesis Cultivation Fund(LW-YP2024011).
文摘Nuclear mass is an important property in both nuclear and astrophysics.In this study,we explore an improved mass model that incorporates a higher-order term of symmetry energy using algorithms.The sequential least squares programming(SLSQP)algorithm augments the precision of this multinomial mass model by reducing the error from 1.863 MeV to 1.631 MeV.These algorithms were further examined using 200 sample mass formulae derived from theδE term of the E_(isospin) mass model.The SLSQP method exhibited superior performance compared to the other algorithms in terms of errors and convergence speed.This algorithm is advantageous for handling large-scale multiparameter optimization tasks in nuclear physics.
基金National High-tech Research and Development Pro-gram (2006AA04Z405)
文摘In order to deal with the issue of huge computational cost very well in direct numerical simulation, the traditional response surface method (RSM) as a classical regression algorithm is used to approximate a functional relationship between the state variable and basic variables in reliability design. The algorithm has treated successfully some problems of implicit performance function in reliability analysis. However, its theoretical basis of empirical risk minimization narrows its range of applications for...
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical ScienceFoundation of China(04C52019)~~
文摘A simple and effective mechanism is proposed to realize the parsimoniousness of the online least squares support vector regression (LS-SVR), and the approach is called the OPLS-SVR for short. Hence, the response time is curtailed. Besides, an OPLS-SVR based analytical redundancy technique is presented to cope with the sensor failure and drift problems to guarantee that the provided signals for the aeroengine controller are correct and acceptable. Experiments on the sensor failure and drift show the effectiveness and the validity of the proposed analytical redundancy.
基金Supported by the National Natural Science Foundation of China(51006052)the Nanjing University of Science and Technology Outstanding Scholar Supporting Program~~
文摘A thrust estimator with high precision and excellent real-time performance is needed to mitigate perfor- mance deterioration for future aero-engines. A weight least squares support vector regression is proposed using a novel weighting strategy. Then a thrust estimator based on the proposed regression is designed for the perfor- mance deterioration. Compared with the existing weighting strategy, the novel one not only satisfies the require- ment of precision but also enhances the real-time performance. Finally, numerical experiments demonstrate the effectiveness and feasibility of the proposed weighted least squares support vector regression for thrust estimator. Key words : intelligent engine control; least squares ; support vector machine ; performance deterioration
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
基金Supported by the National Natural Science Foundation of China(50576033)the Aeronautical Science Foundation of China(04C52019)~~
文摘In order to realize direct thrust control instead of conventional sensors-based control for aero-engine, a thrust estimator with high accuracy is designed by using the boosting technique to improve the performance of least squares support vector regression (LSSVR). There exist two distinct features compared with the conven- tional boosting technique: (1) Sampling without replacement is used to avoid numerical instability for modeling LSSVR. (2) To realize the sparseness of LSSVR and reduce the computational complexity, only a subset of the training samples is used to construct LSSVR. Thus, this boosting method for LSSVR is called the boosting sparse LSSVR (BSLSSVR). Finally, simulation results show that BSLSSVR-based thrust estimator can satisfy the requirement of direct thrust control, i.e. , maximum absolute value of relative error of thrust estimation is not more than 5‰.
基金supported by the "12th Five Year Plan" National Science and Technology Major Special Subject:Well Logging Data and Seismic Data Fusion Technology Research(No.2011ZX05023-005-006)
文摘At the early stages of deep-water oil exploration and development, fewer and further apart wells are drilled than in onshore oilfields. Supervised least squares support vector machine algorithms are used to predict the reservoir parameters but the prediction accuracy is low. We combined the least squares support vector machine (LSSVM) algorithm with semi-supervised learning and established a semi-supervised regression model, which we call the semi-supervised least squares support vector machine (SLSSVM) model. The iterative matrix inversion is also introduced to improve the training ability and training time of the model. We use the UCI data to test the generalization of a semi-supervised and a supervised LSSVM models. The test results suggest that the generalization performance of the LSSVM model greatly improves and with decreasing training samples the generalization performance is better. Moreover, for small-sample models, the SLSSVM method has higher precision than the semi-supervised K-nearest neighbor (SKNN) method. The new semi- supervised LSSVM algorithm was used to predict the distribution of porosity and sandstone in the Jingzhou study area.
基金financially supported by Important National Science and Technology Specific Projects of China(Grant No. 2011ZX05023-005-005)
文摘Conventional shot-gather migration uses a cross-correlation imaging condition proposed by Clarebout (1971), which cannot preserve imaging amplitudes. The deconvolution imaging condition can improve the imaging amplitude and compensate for illumination. However, the deconvolution imaging condition introduces instability issues. The least-squares imaging condition first computes the sum of the cross-correlation of the forward and backward wavefields over all frequencies and sources, and then divides the result by the total energy of the forward wavefield. Therefore, the least-squares imaging condition is more stable than the classic imaging condition. However, the least-squares imaging condition cannot provide accurate results in areas where the illumination is very poor and unbalanced. To stabilize the least-squares imaging condition and balance the imaging amplitude, we propose a novel imaging condition with structure constraints that is based on the least-squares imaging condition. Our novel imaging condition uses a plane wave construction that constrains the imaging result to be smooth along geological structure boundaries in the inversion frame. The proposed imaging condition improves the stability of the imaging condition and balances the imaging amplitude. The proposed condition is applied to two examples, the horizontal layered model and the Sigsbee 2A model. These tests show that, in comparison to the damped least-squares imaging condition, the stabilized least-squares imaging condition with structure constraints improves illumination stability and balance, makes events more consecutive, adjusts the amplitude of the depth layers where the illumination is poor and unbalanced, suppresses imaging artifacts, and is conducive to amplitude preserving imaging of deep layers.
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.
文摘During the course of calculating the rice evapotranspiration using weather factors,we often find that some independent variables have multiple correlation.The phenomena can lead to the traditional multivariate regression model which based on least square method distortion.And the stability of the model will be lost.The model will be built based on partial least square regression in the paper,through applying the idea of main component analyze and typical correlation analyze,the writer picks up some component from original material.Thus,the writer builds up the model of rice evapotranspiration to solve the multiple correlation among the independent variables (some weather factors).At last,the writer analyses the model in some parts,and gains the satisfied result.
文摘Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062)the National Basic Research Program of China (2007CB714000)
文摘The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.
文摘Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper, we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature(HFT) in a wide range of natural gas mixtures. A total number of 279 experimental data points were extracted from open literature to develop the LSSVM. The input parameters were chosen based on the hydrate structure that each gas species form. The modeling resulted in a robust algorithm with the squared correlation coefficients(R^2) of 0.9918. Aside from the excellent statistical parameters of the model, comparing proposed LSSVM with some of conventional correlations showed its supremacy, particularly in the case of sour gases with high H_2S concentrations, where the model surpasses all correlations and existing thermodynamic models. For detection of the probable doubtful experimental data, and applicability of the model, the Leverage statistical approach was performed on the data sets. This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model.
基金the financial support by the National Natural Science Foundation of China (No.21065007)the State Key Laboratory of Food Science and Technology of Nanchang University(Nos.MB-201002 and TS-200919)
文摘Near-infrared spectroscopy(NIR),which is generally used for online monitoring of the food analysis and production process, was applied to determine the internal quality of toothpaste samples.It is acknowledged that the spectra can be significantly influenced by non-linearities introduced by light scatter,therefore,four data preprocessing methods,including off-set correction, 1st-derivative,standard normal variate(SNV) and multiplicative scatter correction(MSC),were employed before the date analysis. The multivariate calibration model of partial least squares(PLS) was established and then was used to predict the pH values of the toothpaste samples of different brand.The results showed that the spectral date processed by MSC was the best one for predicting the pH value of the toothpaste samples.
基金supported by the projects under the Innovation Team of the Safety Standards and Testing Technology for Agricultural Products of Zhejiang Province, China (Grant No.2010R50028)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (Grant No.2006BAK02A18)
文摘Near infrared reflectance spectroscopy (NIRS), a non-destructive measurement technique, was combined with partial least squares regression discrimiant analysis (PLS-DA) to discriminate the transgenic (TCTP and mi166) and wild type (Zhonghua 11) rice. Furthermore, rice lines transformed with protein gene (OsTCTP) and regulation gene (Osmi166) were also discriminated by the NIRS method. The performances of PLS-DA in spectral ranges of 4 000-8 000 cm-1 and 4 000-10 000 cm-1 were compared to obtain the optimal spectral range. As a result, the transgenic and wild type rice were distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was 100.0% in the validation test. The transgenic rice TCTP and mi166 were also distinguished from each other in the range of 4 000-10 000 cm-1, and the correct classification rate was also 100.0%. In conclusion, NIRS combined with PLS-DA can be used for the discrimination of transgenic rice.
基金co-supported by the National Natural Science Foundation of China (Nos. 41804024, 41804026)the Open Fund of Shaanxi Key Laboratory of Integrated and Intelligent Navigation of China (No. SKLIIN-20190205)
文摘The Least Squares Residual(LSR)algorithm,one of the classical Receiver Autonomous Integrity Monitoring(RAIM)algorithms for Global Navigation Satellite System(GNSS),presents a high Missed Detection Risk(MDR)for a large-slope faulty satellite and a high False Alarm Risk(FAR)for a small-slope faulty satellite.From the theoretical analysis of the high MDR and FAR cause,the optimal slope is determined,and thereby the optimal test statistic for fault detection is conceived,which can minimize the FAR with the MDR not exceeding its allowable value.To construct a test statistic approximate to the optimal one,the CorrelationWeighted LSR(CW-LSR)algorithm is proposed.The CW-LSR test statistic remains the sum of pseudorange residual squares,but the square for the most potentially faulty satellite,judged by correlation analysis between the pseudorange residual and observation error,is weighted with an optimal-slope-based factor.It does not obey the same distribution but has the same noncentral parameter with the optimal test statistic.The superior performance of the CW-LSR algorithm is verified via simulation,both reducing the FAR for a small-slope faulty satellite with the MDR not exceeding its allowable value and reducing the MDR for a large-slope faulty satellite at the expense of FAR addition.
基金Supported by National Natural Science Foundation of China(Grant No.51575438)
文摘To improve the measurement and evaluation of form error of an elliptic section, an evaluation method based on least squares fitting is investigated to analyze the form and profile errors of an ellipse using coordinate data. Two error indicators for defining ellipticity are discussed, namely the form error and the profile error, and the difference between both is considered as the main parameter for evaluating machining quality of surface and profile. Because the form error and the profile error rely on different evaluation benchmarks, the major axis and the foci rather than the centre of an ellipse are used as the evaluation benchmarks and can accurately evaluate a tolerance range with the separated form error and profile error of workpiece. Additionally, an evaluation program based on the LS model is developed to extract the form error and the profile error of the elliptic section, which is well suited for separating the two errors by a standard program. Finally, the evaluation method about the form and profile errors of the ellipse is applied to the measurement of skirt line of the piston, and results indicate the effectiveness of the evaluation. This approach provides the new evaluation indicators for the measurement of form and profile errors of ellipse, which is found to have better accuracy and can thus be used to solve the difficult of the measurement and evaluation of the piston in industrial production.
基金Supported by the National Basic Research Program of China(2007CB714006)the National Natural Science Foundation of China(90815023)
文摘An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results.