Equipment selection for industrial process usually requires the extensive participation of industrial experts and technologists, which causes a serious waste of resources. This work presents an equipment selection kno...Equipment selection for industrial process usually requires the extensive participation of industrial experts and technologists, which causes a serious waste of resources. This work presents an equipment selection knowledge base system for industrial styrene process(S-ESKBS) based on the ontology technology. This structure includes a low-level knowledge base and a top-level interactive application. As the core part of the S-ESKBS, the low-level knowledge base consists of the equipment selection ontology library, equipment selection rule set and Pellet inference engine. The top-level interactive application is implemented using S-ESKBS, including the parsing storage layer, inference query layer and client application layer. Case studies for the industrial styrene process equipment selection of an analytical column and an alkylation reactor are demonstrated to show the characteristics and implementability of the S-ESKBS.展开更多
Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyet...Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyethylene smart manufacturing. In this paper, we propose an overall structure for a knowl- edge base based on practical customer demand and the mechanism of the polyethylene process. First, an ontology of the polyethylene process constructed using the seven-step method is introduced as a carrier for knowledge representation and sharing. Next, a prediction method is presented for the molecular weight distribution (MWD) based on a back propagation (BP) neural network model, by analyzing the relationships between the operating conditions and the parameters of the MWD. Based on this network, a differential evolution algorithm is introduced to optimize the operating conditions by tuning the MWD. Finally, utilizing a MySQL database and the Java programming language, a knowledge base system for the operation optimization of the polyethylene process based on a browser/server framework is realized.展开更多
Aiming at the limitations of the existing knowledge representations in intelligent detection,a novel extension-based knowledge representation(EKR) is proposed.The definitions,grammar rules,and formal semantics of EKR ...Aiming at the limitations of the existing knowledge representations in intelligent detection,a novel extension-based knowledge representation(EKR) is proposed.The definitions,grammar rules,and formal semantics of EKR are presented.A rhombus solving strategy(RSS) based on EKR is discussed in detail,including creation of the problem oriented model,extension operator,the solution formation of contradictions problem and extended inference of matter-element.A knowledge base system based on EKR and RSS is developed,which is applied in intelligent detection in the Dendrobium huoshanense photosynthesis process(DHPP).More reasonable results are obtained than traditional rule-based system.The EKR is feasible in intelligent detection to solve the limitations of traditional knowledge representations.展开更多
In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilizati...In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.展开更多
Remote driving,an emergent technology enabling remote operations of vehicles,presents a significant challenge in transmitting large volumes of image data to a central server.This requirement outpaces the capacity of t...Remote driving,an emergent technology enabling remote operations of vehicles,presents a significant challenge in transmitting large volumes of image data to a central server.This requirement outpaces the capacity of traditional communication methods.To tackle this,we propose a novel framework using semantic communications,through a region of interest semantic segmentation method,to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data.To solve the knowledge base inconsistencies inherent in semantic communications,we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases.This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management.Additionally,the implementation of blockchain sharding handles differentiated knowledge bases for various tasks,thus boosting overall blockchain efficiency.Experimental results show a great reduction in latency by sharding and an increase in model accuracy,confirming our framework's effectiveness.展开更多
The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Lear...The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Learning(PBL)as a key strategy for cultivating students’core competencies.Since then,PBL has been widely implemented as a pilot initiative in primary and secondary schools,gaining increasing influence.Analyzing the intellectual foundations of PBL research in China can offer valuable insights into its theoretical and practical dimensions.This study uses CiteSpace to examine 156 PBL-related articles from the CSSCI database,revealing that the knowledge base of PBL research is primarily built on two major domains.The first is the theoretical foundation,characterized by frequently cited literature focusing on the conceptual framework,educational value,interdisciplinary approaches,core competency cultivation,and instructional objectives of PBL.The second is empirical research,where highly cited studies include case analyses across K–12 settings,general high schools,and higher education institutions.Moving forward,future research on PBL should explore its meaning and value from a dual-subject and integrated perspective,expand case studies to include vocational education,and further promote the interdisciplinary development of core competencies through PBL.展开更多
Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on diffe...Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.展开更多
To increase efficiency in fierce competition,it is necessary and urgent to improve the standard of production planning for shipbuilding.The construction of curved blocks is the bottleneck to improve the efficiency of ...To increase efficiency in fierce competition,it is necessary and urgent to improve the standard of production planning for shipbuilding.The construction of curved blocks is the bottleneck to improve the efficiency of shipbuilding.Thus it is a key breakthrough for higher shipbuilding productivity to study the curved block production.By analyzing the scheduling problem in curved blocks production,we propose an intelligent curved block production scheduling method and its system based on a knowledge base,and show the main process of the system.The functions of the system include data management,assembly plan generation,plan adjustment,and plan evaluation.In order to deal with the actual situation and inherit the empirical knowledge,the system extracts some rules to control block selecting,algorithm selection,and evaluation thresholds to build a production decision-making knowledge base in the curved block scheduling system.The proposed knowledge base could be referred and modified by users,especially after a few interactions between the users and the knowledge base.The final assembly plan can be visualized and evaluated to facilitate the observation of plan implementation and effects of the decisions in the process.Finally,the system is verified by a large shipyard in Shanghai using real data and the results illustrate that the proposed method can perform the knowledge-based scheduling for curved blocks construction effectively.展开更多
This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitativ...This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.展开更多
In order to enhance the intelligent level of system and improve the interaetivity with other systems, a knowledge and XML based computer aided process planning (CAPP) system is implemented. It includes user manageme...In order to enhance the intelligent level of system and improve the interaetivity with other systems, a knowledge and XML based computer aided process planning (CAPP) system is implemented. It includes user management, bill of materials(BOM) management, knowledge based process planning, knowledge management and database maintaining sub-systems. This kind of nesting knowledge representation method the system provided can represent complicated arithmetic and logical relationship to deal with process planning tasks. With the representation and manipulation of XML based technological file, the system solves some important problems in web environment such as information interactive efficiency and refreshing of web page. The CAPP system is written in ASP VBScript, JavaScript, Visual C++ languages and Oracle database. At present, the CAPP system is running in Shenyang Machine Tools. The functions of it meet the requirements of enterprise production.展开更多
This paper presents a reference methodology for process orchestration that accelerates the development of Large Language Model (LLM) applications by integrating knowledge bases, API access, and deep web retrieval. By ...This paper presents a reference methodology for process orchestration that accelerates the development of Large Language Model (LLM) applications by integrating knowledge bases, API access, and deep web retrieval. By incorporating structured knowledge, the methodology enhances LLMs’ reasoning abilities, enabling more accurate and efficient handling of complex tasks. Integration with open APIs allows LLMs to access external services and real-time data, expanding their functionality and application range. Through real-world case studies, we demonstrate that this approach significantly improves the efficiency and adaptability of LLM-based applications, especially for time-sensitive tasks. Our methodology provides practical guidelines for developers to rapidly create robust and adaptable LLM applications capable of navigating dynamic information environments and performing effectively across diverse tasks.展开更多
Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level ...Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level and the mechanism level of conceptual design.The principle of computer coding and storing have been built to give a fast and broad selection of mechanisms that meets the requirements of basic motion characters.Then on the basis of mentioned above,the heuristic matching propagation principle (HMPP) of kinematic behaviors and its true table serves as a guide to perform mechanism types selection.Finally an application is given to indicate its practicability and effectiveness.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and know...A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and knowledge base) cooperating mechanism. With all new features, ESKD may form a new research direction and provide a great probability for solving the wealth of knowledge in the knowledge base. The general structural frame of ESKD and some sub-systems among ESKD have been described, and the dynamic knowledge base based on double-base cooperating mechanism has been emphased on. According to the result of demonstrative experi- ment, the structure of ESKD is effective and feasible.展开更多
The aim, characteristics and requirements of stampability evaluation are identified. As sampability evaluation is highly skill intensive and requires a wide variety of design expertise and knowledge, a knowledge based...The aim, characteristics and requirements of stampability evaluation are identified. As sampability evaluation is highly skill intensive and requires a wide variety of design expertise and knowledge, a knowledge based system is proposed for implementing the stampability evaluation. The stampability evaluation knowledge representation, and processing phases are illustrated. A case study demonstrates the feasibility of the knowledge based approach to stampability evaluation.展开更多
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework...As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.展开更多
MedTrad+ is an expert system for African Traditional Medicine where actors are often illiterate. Its originality lies in the use of icons instead of textual content of facts. It has been created by GExpert+ which is...MedTrad+ is an expert system for African Traditional Medicine where actors are often illiterate. Its originality lies in the use of icons instead of textual content of facts. It has been created by GExpert+ which is An Expert system Generator based on the use of icons in a Web environment. With its iconic interface GExpert+ allows any user to overcome any intermediary for the management and the use of its knowledge base. Traditional healers from Yamoussoukro region are working toward its validation.展开更多
In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to pos...In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to possess the essential capacity set. A dynamic capacity set is defined and analyzed based on the definition of the growth and development for knowledge based enterprise organism. The structure of the capacity base, a subset of the capacity set, is optimized for different periods of the organism ...展开更多
The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
To semantically integrate heterogeneous resources and provide a unified intelligent access interface, semantic web technology is exploited to publish and interlink machineunderstandable resources so that intelligent s...To semantically integrate heterogeneous resources and provide a unified intelligent access interface, semantic web technology is exploited to publish and interlink machineunderstandable resources so that intelligent search can be supported. TCMSearch, a deployed intelligent search engine for traditional Chinese medicine (TCM), is presented. The core of the system is an integrated knowledge base that uses a TCM domain ontology to represent the instances and relationships in TCM. Machine-learning techniques are used to generate semantic annotations for texts and semantic mappings for relational databases, and then a semantic index is constructed for these resources. The major benefit of representing the semantic index in RDF/OWL is to support some powerful reasoning functions, such as class hierarchies and relation inferences. By combining resource integration with reasoning, the knowledge base can support some intelligent search paradigms besides keyword search, such as correlated search, semantic graph navigation and concept recommendation.展开更多
基金Supported by the National Science Foundation China(61422303)National Key Technology R&D Program(2015BAF22B02)the Development Fund for Shanghai Talents
文摘Equipment selection for industrial process usually requires the extensive participation of industrial experts and technologists, which causes a serious waste of resources. This work presents an equipment selection knowledge base system for industrial styrene process(S-ESKBS) based on the ontology technology. This structure includes a low-level knowledge base and a top-level interactive application. As the core part of the S-ESKBS, the low-level knowledge base consists of the equipment selection ontology library, equipment selection rule set and Pellet inference engine. The top-level interactive application is implemented using S-ESKBS, including the parsing storage layer, inference query layer and client application layer. Case studies for the industrial styrene process equipment selection of an analytical column and an alkylation reactor are demonstrated to show the characteristics and implementability of the S-ESKBS.
文摘Setting up a knowledge base is a helpful way to optimize the operation of the polyethylene process by improving the performance and the ef ciency of reuse of information and knowledge two critical ele- ments in polyethylene smart manufacturing. In this paper, we propose an overall structure for a knowl- edge base based on practical customer demand and the mechanism of the polyethylene process. First, an ontology of the polyethylene process constructed using the seven-step method is introduced as a carrier for knowledge representation and sharing. Next, a prediction method is presented for the molecular weight distribution (MWD) based on a back propagation (BP) neural network model, by analyzing the relationships between the operating conditions and the parameters of the MWD. Based on this network, a differential evolution algorithm is introduced to optimize the operating conditions by tuning the MWD. Finally, utilizing a MySQL database and the Java programming language, a knowledge base system for the operation optimization of the polyethylene process based on a browser/server framework is realized.
基金the National Natural Science Founda-tion of China(No.60974038)
文摘Aiming at the limitations of the existing knowledge representations in intelligent detection,a novel extension-based knowledge representation(EKR) is proposed.The definitions,grammar rules,and formal semantics of EKR are presented.A rhombus solving strategy(RSS) based on EKR is discussed in detail,including creation of the problem oriented model,extension operator,the solution formation of contradictions problem and extended inference of matter-element.A knowledge base system based on EKR and RSS is developed,which is applied in intelligent detection in the Dendrobium huoshanense photosynthesis process(DHPP).More reasonable results are obtained than traditional rule-based system.The EKR is feasible in intelligent detection to solve the limitations of traditional knowledge representations.
文摘In the context of power generation companies, vast amounts of specialized data and expert knowledge have been accumulated. However, challenges such as data silos and fragmented knowledge hinder the effective utilization of this information. This study proposes a novel framework for intelligent Question-and-Answer (Q&A) systems based on Retrieval-Augmented Generation (RAG) to address these issues. The system efficiently acquires domain-specific knowledge by leveraging external databases, including Relational Databases (RDBs) and graph databases, without additional fine-tuning for Large Language Models (LLMs). Crucially, the framework integrates a Dynamic Knowledge Base Updating Mechanism (DKBUM) and a Weighted Context-Aware Similarity (WCAS) method to enhance retrieval accuracy and mitigate inherent limitations of LLMs, such as hallucinations and lack of specialization. Additionally, the proposed DKBUM dynamically adjusts knowledge weights within the database, ensuring that the most recent and relevant information is utilized, while WCAS refines the alignment between queries and knowledge items by enhanced context understanding. Experimental validation demonstrates that the system can generate timely, accurate, and context-sensitive responses, making it a robust solution for managing complex business logic in specialized industries.
基金supported in part by the National Natural Science Foundation of China under Grant No.62062031in part by the MIC/SCOPE#JP235006102+2 种基金in part by JST ASPIRE Grant Number JPMJAP2325in part by ROIS NII Open Collaborative Research under Grant 24S0601in part by collaborative research with Toyota Motor Corporation,Japan。
文摘Remote driving,an emergent technology enabling remote operations of vehicles,presents a significant challenge in transmitting large volumes of image data to a central server.This requirement outpaces the capacity of traditional communication methods.To tackle this,we propose a novel framework using semantic communications,through a region of interest semantic segmentation method,to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data.To solve the knowledge base inconsistencies inherent in semantic communications,we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases.This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management.Additionally,the implementation of blockchain sharding handles differentiated knowledge bases for various tasks,thus boosting overall blockchain efficiency.Experimental results show a great reduction in latency by sharding and an increase in model accuracy,confirming our framework's effectiveness.
基金Provincial-Level Quality Engineering Project,Preschool Education Teacher Training Base of Fuyang Normal University(Project No.:2023cyts023)University-Level Research Team Project,Collaborative Innovation Center for Basic Education in Northern Anhui(Project No.:kytd202418)。
文摘The“Opinions on Comprehensively Deepening Curriculum Reform to Fulfill the Fundamental Task of Strengthening Moral Education”,issued by China’s Ministry of Education in 2015,explicitly identified Project-Based Learning(PBL)as a key strategy for cultivating students’core competencies.Since then,PBL has been widely implemented as a pilot initiative in primary and secondary schools,gaining increasing influence.Analyzing the intellectual foundations of PBL research in China can offer valuable insights into its theoretical and practical dimensions.This study uses CiteSpace to examine 156 PBL-related articles from the CSSCI database,revealing that the knowledge base of PBL research is primarily built on two major domains.The first is the theoretical foundation,characterized by frequently cited literature focusing on the conceptual framework,educational value,interdisciplinary approaches,core competency cultivation,and instructional objectives of PBL.The second is empirical research,where highly cited studies include case analyses across K–12 settings,general high schools,and higher education institutions.Moving forward,future research on PBL should explore its meaning and value from a dual-subject and integrated perspective,expand case studies to include vocational education,and further promote the interdisciplinary development of core competencies through PBL.
文摘Aim To analyse the influence of knowledge base on the performance of the fuzzy controller of the electrohydraulic position control system,and to determine their selection cri- teria. Methods Experiments based on different membership functions,scaling factors and con-trol rules were done separately.The experiment results and the influence of different know- ledge base on the control performance were analysed in theory so that criteria of selcting knowledge base can be summarized correctly.Results Knowledge base,including membershipfunctions, scaling factors and control rules,has a crucial effect on the fuzzy control system.Suitably selected knowledge base can lead to good control performance of fuzzy control sys-tem. Conclusion Being symmetric,having an intersection ratio of 1 and satisfying width con- dition are three necessities for selecting membership functions.Selecting scaling factors dependson both the system requirement and a comprehensive analysis in the overshoot,oscillation, rising time and stability. Integrity and continuity must be guaranteed when determining control rules.
基金the China High-Tech Ship Project of the Ministry of Industry and Information Technology(No.2021-51(MC-202032-Z08))。
文摘To increase efficiency in fierce competition,it is necessary and urgent to improve the standard of production planning for shipbuilding.The construction of curved blocks is the bottleneck to improve the efficiency of shipbuilding.Thus it is a key breakthrough for higher shipbuilding productivity to study the curved block production.By analyzing the scheduling problem in curved blocks production,we propose an intelligent curved block production scheduling method and its system based on a knowledge base,and show the main process of the system.The functions of the system include data management,assembly plan generation,plan adjustment,and plan evaluation.In order to deal with the actual situation and inherit the empirical knowledge,the system extracts some rules to control block selecting,algorithm selection,and evaluation thresholds to build a production decision-making knowledge base in the curved block scheduling system.The proposed knowledge base could be referred and modified by users,especially after a few interactions between the users and the knowledge base.The final assembly plan can be visualized and evaluated to facilitate the observation of plan implementation and effects of the decisions in the process.Finally,the system is verified by a large shipyard in Shanghai using real data and the results illustrate that the proposed method can perform the knowledge-based scheduling for curved blocks construction effectively.
基金supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Science and Technology Major Project of China (2016ZX05014002-006)the National Natural Science Foundation of China (42072234,42272180)。
文摘This study endeavors to formulate a comprehensive methodology for establishing a Geological Knowledge Base(GKB)tailored to fracture-cavity reservoir outcrops within the North Tarim Basin.The acquisition of quantitative geological parameters was accomplished through diverse means such as outcrop observations,thin section studies,unmanned aerial vehicle scanning,and high-resolution cameras.Subsequently,a three-dimensional digital outcrop model was generated,and the parameters were standardized.An assessment of traditional geological knowledge was conducted to delineate the knowledge framework,content,and system of the GKB.The basic parameter knowledge was extracted using multiscale fine characterization techniques,including core statistics,field observations,and microscopic thin section analysis.Key mechanism knowledge was identified by integrating trace elements from filling,isotope geochemical tests,and water-rock simulation experiments.Significant representational knowledge was then extracted by employing various methods such as multiple linear regression,neural network technology,and discriminant classification.Subsequently,an analogy study was performed on the karst fracture-cavity system(KFCS)in both outcrop and underground reservoir settings.The results underscored several key findings:(1)Utilization of a diverse range of techniques,including outcrop observations,core statistics,unmanned aerial vehicle scanning,high-resolution cameras,thin section analysis,and electron scanning imaging,enabled the acquisition and standardization of data.This facilitated effective management and integration of geological parameter data from multiple sources and scales.(2)The GKB for fracture-cavity reservoir outcrops,encompassing basic parameter knowledge,key mechanism knowledge,and significant representational knowledge,provides robust data support and systematic geological insights for the intricate and in-depth examination of the genetic mechanisms of fracture-cavity reservoirs.(3)The developmental characteristics of fracturecavities in karst outcrops offer effective,efficient,and accurate guidance for fracture-cavity research in underground karst reservoirs.The outlined construction method of the outcrop geological knowledge base is applicable to various fracture-cavity reservoirs in different layers and regions worldwide.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No. 2001AA412020, No. 2001AA412210).
文摘In order to enhance the intelligent level of system and improve the interaetivity with other systems, a knowledge and XML based computer aided process planning (CAPP) system is implemented. It includes user management, bill of materials(BOM) management, knowledge based process planning, knowledge management and database maintaining sub-systems. This kind of nesting knowledge representation method the system provided can represent complicated arithmetic and logical relationship to deal with process planning tasks. With the representation and manipulation of XML based technological file, the system solves some important problems in web environment such as information interactive efficiency and refreshing of web page. The CAPP system is written in ASP VBScript, JavaScript, Visual C++ languages and Oracle database. At present, the CAPP system is running in Shenyang Machine Tools. The functions of it meet the requirements of enterprise production.
文摘This paper presents a reference methodology for process orchestration that accelerates the development of Large Language Model (LLM) applications by integrating knowledge bases, API access, and deep web retrieval. By incorporating structured knowledge, the methodology enhances LLMs’ reasoning abilities, enabling more accurate and efficient handling of complex tasks. Integration with open APIs allows LLMs to access external services and real-time data, expanding their functionality and application range. Through real-world case studies, we demonstrate that this approach significantly improves the efficiency and adaptability of LLM-based applications, especially for time-sensitive tasks. Our methodology provides practical guidelines for developers to rapidly create robust and adaptable LLM applications capable of navigating dynamic information environments and performing effectively across diverse tasks.
基金Sponsored by the Chinese National Foundation of Science Na 59875058.
文摘Firstly data standardization technology and combined classification method have been applied to carry out classification of kinematic behaviors and mechanisms in the mapping field between the kinematic behavior level and the mechanism level of conceptual design.The principle of computer coding and storing have been built to give a fast and broad selection of mechanisms that meets the requirements of basic motion characters.Then on the basis of mentioned above,the heuristic matching propagation principle (HMPP) of kinematic behaviors and its true table serves as a guide to perform mechanism types selection.Finally an application is given to indicate its practicability and effectiveness.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
文摘A new structure of ESKD (expert system based on knowledge discovery system KD (D&K)) is first presented on the basis of KD (D&K)-a synthesized knowledge discovery system based on double-base (database and knowledge base) cooperating mechanism. With all new features, ESKD may form a new research direction and provide a great probability for solving the wealth of knowledge in the knowledge base. The general structural frame of ESKD and some sub-systems among ESKD have been described, and the dynamic knowledge base based on double-base cooperating mechanism has been emphased on. According to the result of demonstrative experi- ment, the structure of ESKD is effective and feasible.
文摘The aim, characteristics and requirements of stampability evaluation are identified. As sampability evaluation is highly skill intensive and requires a wide variety of design expertise and knowledge, a knowledge based system is proposed for implementing the stampability evaluation. The stampability evaluation knowledge representation, and processing phases are illustrated. A case study demonstrates the feasibility of the knowledge based approach to stampability evaluation.
基金funded by the Deanship of Scientific Research at Jouf University under Grant number DSR-2022-RG-0101。
文摘As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.
文摘MedTrad+ is an expert system for African Traditional Medicine where actors are often illiterate. Its originality lies in the use of icons instead of textual content of facts. It has been created by GExpert+ which is An Expert system Generator based on the use of icons in a Web environment. With its iconic interface GExpert+ allows any user to overcome any intermediary for the management and the use of its knowledge base. Traditional healers from Yamoussoukro region are working toward its validation.
文摘In this paper, the knowledge based enterprise is considered as an organism, which possesses a set of capabilities. The organizational structure model of knowledge based enterprise organism is described in order to possess the essential capacity set. A dynamic capacity set is defined and analyzed based on the definition of the growth and development for knowledge based enterprise organism. The structure of the capacity base, a subset of the capacity set, is optimized for different periods of the organism ...
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
基金Program for Changjiang Scholars and Innovative Research Team in University (NoIRT0652)the National High Technology Research and Development Program of China (863 Program) ( No2006AA01A123)
文摘To semantically integrate heterogeneous resources and provide a unified intelligent access interface, semantic web technology is exploited to publish and interlink machineunderstandable resources so that intelligent search can be supported. TCMSearch, a deployed intelligent search engine for traditional Chinese medicine (TCM), is presented. The core of the system is an integrated knowledge base that uses a TCM domain ontology to represent the instances and relationships in TCM. Machine-learning techniques are used to generate semantic annotations for texts and semantic mappings for relational databases, and then a semantic index is constructed for these resources. The major benefit of representing the semantic index in RDF/OWL is to support some powerful reasoning functions, such as class hierarchies and relation inferences. By combining resource integration with reasoning, the knowledge base can support some intelligent search paradigms besides keyword search, such as correlated search, semantic graph navigation and concept recommendation.