Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ...Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.展开更多
移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数...移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数据库服务器同步机制的研究,论述了复制及远程数据存取的编程思想,并通过示例给出程序实现方法。展开更多
High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density great...High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.展开更多
文摘Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.
文摘移动设备从服务器下载数据,在本地进行数据查询、更改、插入等操作,再与服务器进行数据同步,这是企业应用当中的一种模式。在基于SQL Server 2005 Compact Edition的环境下,可以通过数据库复制及远程数据存取实现。通过对移动设备与数据库服务器同步机制的研究,论述了复制及远程数据存取的编程思想,并通过示例给出程序实现方法。
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700503)the National High Technology Research and Development Program of China (No. 2015AA034201)+2 种基金the Beijing Science and Technology Plan (No. D161100002416001)the National Natural Science Foundation of China (No. 51172018)Kennametal Inc
文摘High-velocity compaction is an advanced compaction technique to obtain high-density compacts at a compaction velocity of ≤10 m/s. It was applied to various metallic powders and was verified to achieve a density greater than 7.5 g/cm^3 for the Fe-based powders. The ability to rapidly and accurately predict the green density of compacts is important, especially as an alternative to costly and time-consuming materials design by trial and error. In this paper, we propose a machine-learning approach based on materials informatics to predict the green density of compacts using relevant material descriptors, including chemical composition, powder properties, and compaction energy. We investigated four models using an experimental dataset for appropriate model selection and found the multilayer perceptron model worked well, providing distinguished prediction performance, with a high correlation coefficient and low error values. Applying this model, we predicted the green density of nine materials on the basis of specific processing parameters. The predicted green density agreed very well with the experimental results for each material, with an inaccuracy less than 2%. The prediction accuracy of the developed method was thus confirmed by comparison with experimental results.