Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density...Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.展开更多
The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter per...The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter persistent dendrite growth and parasitic reactions,driven by the inhomogeneous charge distribution and water-dominated environment within the EDL.Compounding this,classical EDL theory,rooted in meanfield approximations,further fails to resolve molecular-scale interfacial dynamics under battery-operating conditions,limiting mechanistic insights.Herein,we established a multiscale theoretical calculation framework from single molecular characteristics to interfacial ion distribution,revealing the EDL’s structure and interactions between different ions and molecules,which helps us understand the parasitic processes in depth.Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helmholtz plane drives severe hydrogen evolution and by-product formation.Guided by these insights,we engineered a“water-poor and anion-expelled”EDL using 4,1’,6’-trichlorogalactosucrose(TGS)as an electrolyte additive.As a result,Zn||Zn symmetric cells with TGS exhibited stable cycling for over 4700 h under a current density of 1 mA cm^(−2),while NaV_(3)O_(8)·1.5H_(2)O-based full cells kept 90.4%of the initial specific capacity after 800 cycles at 5 A g^(−1).This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance ARZB design through integrated theory-experiment approaches.展开更多
Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on ...Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on energy storage and conversion applications,such as use as anodes in lithium-ion batteries.In this paper,all-inorganic lead-free halide perovskite Cs_(3)Bi_(2)Cl_(9)powders were synthesized by the grinding method,and the lattice was successfully adjusted via introducing Mn^(2+).The characterization results show that Mn-ion substitution can cause local lattice distortion to restructure the lattice,which will cause a mixed arrangement of[BiCl_(6)]octahedra to improve the performance of the anode material.This new material can provide a feasible solution for solving the problem of low specific capacity anode materials caused by unstable crystal structures,and also indicates that such perovskites with unique crystal structures and lattice tunability have broad application prospects in lithium-ion batteries.展开更多
Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ...Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.展开更多
With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its ...With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.展开更多
The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batterie...The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.展开更多
To meet the demand for enhanced energy density and improved safety in batteries,anode-free aqueous zinc metal batteries(AF-AZMBs)have garnered significant research interest and attention.Compared with conventional aqu...To meet the demand for enhanced energy density and improved safety in batteries,anode-free aqueous zinc metal batteries(AF-AZMBs)have garnered significant research interest and attention.Compared with conventional aqueous Zn batteries,AF-AZMBs provide higher theoretical energy density,a more simplified structural design,and improved cost-effectiveness.However,AF-AZMBs are confronted with severe capacity degradation and lifespan reduction due to the absence of an excess zinc inventory.In recent years,extensive research efforts have been devoted to addressing these challenges,resulting in significant advancements.Therefore,there is highly warranted for a comprehensive discussion on AF-AZMBs.Herein,this review provides a thorough analysis and in-depth investigation of recent developments in AF-AZMBs from the perspectives of current collectors,electrolytes,and cathodes.Specifically,the working mechanisms and advantageous features of AF-AZMBs are summarized.The major scientific issues affecting capacity degradation and lifespan reduction are discussed,including inhomogeneous Zn deposition/stripping kinetics,unstable SEI layer,and irreversible cathode material loss.Furthermore,the corresponding strategies to address these issues are highlighted,such as anodic current collector design,electrolyte engineering,and cathodic modification.Finally,several promising directions are explored for the future advancement of AF-AZMBs,including developing high-performance Zn-rich cathodes,regulating solid-state electrolytes,and designing dual-electrode-free zinc-metal batteries.Additionally,exploring advanced characterization and analysis techniques and optimizing pouch cells under practical operating conditions are also mentioned,highlighting the urgent need for further research to address existing bottlenecks.展开更多
H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an elec...H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries.展开更多
Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.H...Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems.展开更多
Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current c...Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.展开更多
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid...In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output.展开更多
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci...The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.展开更多
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod...A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.展开更多
Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the futur...Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.展开更多
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin...The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.展开更多
This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but...This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but does not hinder the transfer of the electrons at the interface.Fortunately,the addition of Ce,La,and Ca into AZ63 alloy achieves this goal.The Mg-air battery with AZ63X anode in 3.5%Na Cl has an ultrahigh anodic efficiency of 85.7±1.7%and energy-density of 2431±53 mWh g^(-1)with the unique discharge product film,surpassing the values of most reported Mg-air batteries.Furthermore,the alloying elements reduce the anode delamination effect significantly by transforming the block Mg_(17)Al_(12)phase into the connected Mg_(17)Al_(12)structure and fine rod Al_(2)RE and Al_(2)Ca.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio...Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.展开更多
Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hamp...Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs.展开更多
Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes...Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.展开更多
Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
基金supported by the Natural Science Foundation of China(Nos.52125202,52202100,and U24A2065)the Natural Science Foundation of Jiangsu Province(BK20243016)Fundamental Research Funds for the Central Universities,China Postdoctoral Science Foundation(No.2024T171166).
文摘Aqueous zinc-ion batteries(AZIBs)have garnered considerable attention as promising post-lithium energy storage technologies owing to their intrinsic safety,cost-effectiveness,and competitive gravimetric energy density.However,their practical commercialization is hindered by critical challenges on the anode side,including dendrite growth and parasitic reactions at the anode/electrolyte interface.Recent studies highlight that rational electrolyte structure engineering offers an effective route to mitigate these issues and strengthen the electrochemical performance of the zinc metal anode.In this review,we systematically summarize state-of-the-art strategies for electrolyte optimization,with a particular focus on the zinc salts regulation,electrolyte additives,and the construction of novel electrolytes,while elucidating the underlying design principles.We further discuss the key structure–property relationships governing electrolyte behavior to provide guidance for the development of next-generation electrolytes.Finally,future perspectives on advanced electrolyte design are proposed.This review aims to serve as a comprehensive reference for researchers exploring high-performance electrolyte engineering in AZIBs.
基金supported by the National Natural Science Foundation of China(52471240)the Natural Science Foundation of Zhejiang Province(LZ23B030003)+2 种基金the Fundamental Research Funds for the Central Universities(226-2024-00075)support from the Engineering and Physical Sciences Research Council(EPSRC,UK)RiR grant-RIR18221018-1EU COST CA23155。
文摘The electric double layer(EDL)at the electrochemical interface is crucial for ion transport,charge transfer,and surface reactions in aqueous rechargeable zinc batteries(ARZBs).However,Zn anodes routinely encounter persistent dendrite growth and parasitic reactions,driven by the inhomogeneous charge distribution and water-dominated environment within the EDL.Compounding this,classical EDL theory,rooted in meanfield approximations,further fails to resolve molecular-scale interfacial dynamics under battery-operating conditions,limiting mechanistic insights.Herein,we established a multiscale theoretical calculation framework from single molecular characteristics to interfacial ion distribution,revealing the EDL’s structure and interactions between different ions and molecules,which helps us understand the parasitic processes in depth.Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helmholtz plane drives severe hydrogen evolution and by-product formation.Guided by these insights,we engineered a“water-poor and anion-expelled”EDL using 4,1’,6’-trichlorogalactosucrose(TGS)as an electrolyte additive.As a result,Zn||Zn symmetric cells with TGS exhibited stable cycling for over 4700 h under a current density of 1 mA cm^(−2),while NaV_(3)O_(8)·1.5H_(2)O-based full cells kept 90.4%of the initial specific capacity after 800 cycles at 5 A g^(−1).This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance ARZB design through integrated theory-experiment approaches.
基金supported by the Foundation of Yunnan Province(Nos.202301AU070021,202201BE070001-027)the Test Foundation of KUST(No.2022T20210208).
文摘Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on energy storage and conversion applications,such as use as anodes in lithium-ion batteries.In this paper,all-inorganic lead-free halide perovskite Cs_(3)Bi_(2)Cl_(9)powders were synthesized by the grinding method,and the lattice was successfully adjusted via introducing Mn^(2+).The characterization results show that Mn-ion substitution can cause local lattice distortion to restructure the lattice,which will cause a mixed arrangement of[BiCl_(6)]octahedra to improve the performance of the anode material.This new material can provide a feasible solution for solving the problem of low specific capacity anode materials caused by unstable crystal structures,and also indicates that such perovskites with unique crystal structures and lattice tunability have broad application prospects in lithium-ion batteries.
基金National Key Research and Development Program of China (2022YFB2402200)National Natural Science Foundation of China (22225201,22379028)+2 种基金Fundamental Research Funds for the Central Universities (20720220010)Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (21TQ009)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (23520750400)。
文摘Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.
基金supported by the National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(No.NRF-2021 M3 H4A1A02045962).
文摘With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.
基金Financial support from National Key R&D Program(2022YFB2404600)Natural Science Foundation of China(Key Project of 52131306)+1 种基金Project on Carbon Emission Peak and Neutrality of Jiangsu Province(BE2022031-4)the Big Data Computing Center of Southeast University are greatly appreciated.
文摘The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.
基金supported by the National Natural Science Foundation of China(22209006)the Fundamental Research Funds for the Central Universities(buctrc202307)the Natural Science Foundation of Shandong Province(ZR2022QE009)。
文摘To meet the demand for enhanced energy density and improved safety in batteries,anode-free aqueous zinc metal batteries(AF-AZMBs)have garnered significant research interest and attention.Compared with conventional aqueous Zn batteries,AF-AZMBs provide higher theoretical energy density,a more simplified structural design,and improved cost-effectiveness.However,AF-AZMBs are confronted with severe capacity degradation and lifespan reduction due to the absence of an excess zinc inventory.In recent years,extensive research efforts have been devoted to addressing these challenges,resulting in significant advancements.Therefore,there is highly warranted for a comprehensive discussion on AF-AZMBs.Herein,this review provides a thorough analysis and in-depth investigation of recent developments in AF-AZMBs from the perspectives of current collectors,electrolytes,and cathodes.Specifically,the working mechanisms and advantageous features of AF-AZMBs are summarized.The major scientific issues affecting capacity degradation and lifespan reduction are discussed,including inhomogeneous Zn deposition/stripping kinetics,unstable SEI layer,and irreversible cathode material loss.Furthermore,the corresponding strategies to address these issues are highlighted,such as anodic current collector design,electrolyte engineering,and cathodic modification.Finally,several promising directions are explored for the future advancement of AF-AZMBs,including developing high-performance Zn-rich cathodes,regulating solid-state electrolytes,and designing dual-electrode-free zinc-metal batteries.Additionally,exploring advanced characterization and analysis techniques and optimizing pouch cells under practical operating conditions are also mentioned,highlighting the urgent need for further research to address existing bottlenecks.
基金supported by the National Natural Science Foundation of China(22479031,22162004)the Natural Science Foundation of Guangxi(2022JJD120011).
文摘H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries.
基金supported by the National Natural Science Foundation of China(Nos.52102291,52271011,and 51701142)supported by a grant from the Cangzhou Institute of Tiangong University(No.TGCYY-F-0201)。
文摘Sodium metal has been widely studied in the field of batteries due to its high theoretical specific capacity(~1,166 m Ah/g),low redox potential(-2.71 V compared to standard hydrogen electrode),and lowcost advantages.However,problems such as unstable solid electrolyte interface(SEI),uncontrolled dendrite growth,and side reactions between solid-liquid interfaces have hindered the practical application of sodium metal anodes(SMAs).Currently,lots of strategies have been developed to achieve stabilized sodium metal anodes.Among these strategies,modified metal current collectors(MCCs)stand out due to their unique role in accommodating volumetric fluctuations with superior structure,lowering the energy barrier for sodium nucleation,and providing guided uniform sodium deposition.In this review,we first introduced three common metal-based current collectors applied to SMAs.Then,we summarized strategies to improve sodium deposition behavior by optimally engineering the surface of MCCs,including surface loading,surface structural design,and surface engineering for functional modification.We have followed the latest research progress and summarized surface optimization cases on different MCCs and their applications in battery systems.
基金supported by the Quzhou Science and Technology Bureau Project(2023D023,2023D030,2023D002,and2024D028)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LZY23B030002)+3 种基金the Shijiazhuang Shangtai Technology Co.,Ltd.Hebei Provincial Department of Science and Technology(24291101Z)the International Cooperation Projects of Sichuan Provincial Department of Science and Technology(2021YFH0126)the Sichuan Provincial Science and Technology Department's key research project(2023YFG0203)。
文摘Metal foils have emerged as one of the promising materials for anode-free batteries due to their high energy density and scalability in production.The unclear lithium plating/stripping kinetics of metal foil current collectors in anode-free batteries was addressed by using the non-destructive distribution of relaxation times(DRT)analysis to systematically investigate the lithium transport behavior of 14 metal foils and its correlation with electrochemical performance.By integrating energy-dispersive spectro scopy(EDS),cyclic voltammetry(CV),and galvanostatic testing,the exceptional properties of indium(In),tin(Sn),and silver(Ag)were revealed:the Li-In alloying reaction exhibits high reversibility,Li-Sn alloys demonstrate outstanding cycling stability,and the Li-Ag solid-solution mechanism provides an ideal lithium deposition interface on the silver substrate.The DRT separates the polarization internal resistance of lithium ions passing through the SEI layer(R_(sei),τ2)and the polarization internal resistance of lithium ions undergoing charge transfer reaction at the electrolyte/electrode interface(R_(ct),τ3)by decoupling the electrochemical impedance spectroscopy(EIS).For the first time,the correlation betweenτ2,τ3,and the cycle life/Coulombic efficiency of alloy/solid-solution metals was established,while non-alloy metals are not suitable for this method due to differences in lithium deposition mechanisms.This study not only illuminates the structure-property relationship governing the lithium kinetics of metal foil electrodes but also provides a novel non-destructive analytical strategy and theoretical guidance for the rational design of stable anodes in high-energy-density batteries,facilitating the efficient screening and optimization of anode-free battery.
文摘In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output.
基金the National Natural Science:Foundation of China(52375370)the Open Project of Salt Lake Chemical Engineering Research Complex,Qinghai University(2023-DXSSKF-Z02)+2 种基金the Nat-ural Science Foundation of Shanxi(202103021224049)GDAS Projects of International cooperation platform of Sci-ence and Technology(2022GDASZH-2022010203-003)Guangdong province Science and Technology Plan Projects(2023B1212060045).
文摘The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment.
基金partially supported by the National Natural Science Foundation of China(No.51901153)Shanxi Scholarship Council of China(No.2019032)+1 种基金the Natural Science Foundation of Shanxi,China(No.202103021224049)the Shanxi Zhejiang University New Materials and Chemical Research Institute Scientific Research Project,China(No.2022SX-TD025)。
文摘A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture.
基金supported by the National Natural Science Foundation of China(22209057)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J0839).
文摘Potassium-ion batteries(PIBs)are considered as a promising energy storage system owing to its abundant potassium resources.As an important part of the battery composition,anode materials play a vital role in the future development of PIBs.Bismuth-based anode materials demonstrate great potential for storing potassium ions(K^(+))due to their layered structure,high theoretical capacity based on the alloying reaction mechanism,and safe operating voltage.However,the large radius of K^(+)inevitably induces severe volume expansion in depotassiation/potassiation,and the sluggish kinetics of K^(+)insertion/extraction limits its further development.Herein,we summarize the strategies used to improve the potassium storage properties of various types of materials and introduce recent advances in the design and fabrication of favorable structural features of bismuth-based materials.Firstly,this review analyzes the structure,working mechanism and advantages and disadvantages of various types of materials for potassium storage.Then,based on this,the manuscript focuses on summarizing modification strategies including structural and morphological design,compositing with other materials,and electrolyte optimization,and elucidating the advantages of various modifications in enhancing the potassium storage performance.Finally,we outline the current challenges of bismuth-based materials in PIBs and put forward some prospects to be verified.
基金supported by the Key Science and Technol-ogy Program of Henan Province(No.232102241020)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)+1 种基金the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001)the Natural Science Foundation of Henan Province(242300420021).
文摘The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode.
基金supported by the National Natural Science Foundation of China(52471095)National Key Research and Development Program of China(Grant No.2023YFC2811404)Natural Science Foundation of Xiamen,China(No.3502Z20227015)。
文摘This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but does not hinder the transfer of the electrons at the interface.Fortunately,the addition of Ce,La,and Ca into AZ63 alloy achieves this goal.The Mg-air battery with AZ63X anode in 3.5%Na Cl has an ultrahigh anodic efficiency of 85.7±1.7%and energy-density of 2431±53 mWh g^(-1)with the unique discharge product film,surpassing the values of most reported Mg-air batteries.Furthermore,the alloying elements reduce the anode delamination effect significantly by transforming the block Mg_(17)Al_(12)phase into the connected Mg_(17)Al_(12)structure and fine rod Al_(2)RE and Al_(2)Ca.
基金financially supported by the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(E411060316)the NSFC-CONICFT Joint Project(51961125207)+1 种基金the Special Fund(2024)of Basic Scientific Research Project at Undergraduate University in Liaoning Province(LJ212410152056)the Foundation(GZKF202301)of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.
基金supported by the Battery Energy Storage Testing Center of Chongqing through their provision of testing support and technical assistance。
文摘Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs.
基金supported by the National Natural Science Foundation of China (No. 22008256)。
文摘Silicon is believed to be a critical anode material for approaching the roadmap of lithium-ion batteries due to its high specific capacity. But this aim has been hindered by the quick capacity fading of its electrodes during repeated charge–discharge cycles. In this work, a “soft-hard”double-layer coating has been proposed and carried out on ball-milled silicon particles. It is composed of inside conductive pathway and outside elastic coating, which is achieved by decomposing a conductive graphite layer on the silicon surface and further coating it with a polymer layer.The incorporation of the second elastic coating on the inside carbon coating enables silicon particles strongly interacted with binders, thereby making the electrodes displaying an obviously improved cycling stability. As-obtained double-coated silicon anodes deliver a reversible capacity of 2280 m Ah g^(-1)at the voltage of 0.05–2 V, and maintains over 1763 mAh g^(-1)after 50 cycles. The double-layer coating does not crack after the repeated cycling, critical for the robust performance of the electrodes. In addition, as-obtained silicon particles are mixed with commercial graphite to make actual anodes for lithium-ion batteries. A capacity of 714 mAh g^(-1)has been achieved based on the total mass of the electrodes containing 10 wt.% double-coated silicon particles. Compared with traditional carbon coating or polymeric coating, the double-coating electrodes display a much better performance. Therefore, the double-coating strategy can give inspiration for better design and synthesis of silicon anodes, as well as other battery materials.
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.