Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article...Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.展开更多
The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration meth...The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering.In this paper,a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates.In contrast to the existing 3D shear modulus constructed based on experience,in this paper the shear modulus is derived theoretically through a limit process.Then,a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT;its good stability and convergence efficiency are verified by using benchmark examples.Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large,which is not in line with reality.展开更多
To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the...To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.展开更多
Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose...Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories(4DTs)(3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategiclevel conflict management is developed in this paper.Specifically,a bi-objective N4 DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm(MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4 DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.展开更多
An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measur...An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remaine...On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.展开更多
Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performan...Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.展开更多
A Leverrier-like algorithm is presented which allows the computation of the transfer function of a linear regular system from its m-D state-space description,without inverting a multivariable polynomial matrix. This a...A Leverrier-like algorithm is presented which allows the computation of the transfer function of a linear regular system from its m-D state-space description,without inverting a multivariable polynomial matrix. This algorithm is an extension of the classic Leverrier's algorithm for 1-D system and it reduces the computational cost.ra-D Cayley-Hamilton theorem is also shown by the algorithm.展开更多
文摘Field D* algorithm is widely used in mobile robot navigation since it can plan and replan any-angle paths through non-uniform cost grids. However, it still suffers from inefficiency and sub-optimality. In this article, a new linear interpolation-based planning and replanning algorithm, Update-Reducing Field D*, is proposed. It employs different approaches during initial planning and replanning respectively in order to reduce the number of updates of the rhs-values of vertices. Experiments have shown that Update-Reducing Field D* runs faster than Field D* and returns smoother and lower-cost paths.
基金the National Natural Science Foundation of China(Grant 51908071)Scientific Research Project of Education Department of Hunan Province(Grant 18C0194)Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport,Changsha University of Science&Technology(Grant kfi 170303).
文摘The bimodulus material is a classical model to describe the elastic behavior of materials with tension-compression asymmetry.Due to the inherently nonlinear properties of bimodular materials,traditional iteration methods suffer from low convergence efficiency and poor adaptability for large-scale structures in engineering.In this paper,a novel 3D algorithm is established by complementing the three shear moduli of the constitutive equation in principal stress coordinates.In contrast to the existing 3D shear modulus constructed based on experience,in this paper the shear modulus is derived theoretically through a limit process.Then,a theoretically self-consistent complemented algorithm is established and implemented in ABAQUS via UMAT;its good stability and convergence efficiency are verified by using benchmark examples.Numerical analysis shows that the calculation error for bimodulus structures using the traditional linear elastic theory is large,which is not in line with reality.
基金The National Natural Science Foundation of China(No.61473088)Six Talent Peaks Projects in Jiangsu Province
文摘To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.
基金co-supported by the National Science Foundation for Young Scientists of China(No.61401011)the National Key Technologies R&D Program of China(No.2015BAG15B01)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61521091)
文摘Under the demand of strategic air traffic flow management and the concept of trajectory based operations(TBO),the network-wide 4D flight trajectories planning(N4DFTP) problem has been investigated with the purpose of safely and efficiently allocating 4D trajectories(4DTs)(3D position and time) for all the flights in the whole airway network.Considering that the introduction of large-scale 4DTs inevitably increases the problem complexity,an efficient model for strategiclevel conflict management is developed in this paper.Specifically,a bi-objective N4 DFTP problem that aims to minimize both potential conflicts and the trajectory cost is formulated.In consideration of the large-scale,high-complexity,and multi-objective characteristics of the N4DFTP problem,a multi-objective multi-memetic algorithm(MOMMA) that incorporates an evolutionary global search framework together with three problem-specific local search operators is implemented.It is capable of rapidly and effectively allocating 4DTs via rerouting,target time controlling,and flight level changing.Additionally,to balance the ability of exploitation and exploration of the algorithm,a special hybridization scheme is adopted for the integration of local and global search.Empirical studies using real air traffic data in China with different network complexities show that the proposed MOMMA is effective to solve the N4 DFTP problem.The solutions achieved are competitive for elaborate decision support under a TBO environment.
文摘An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
基金Project(41877219)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-msxmX0585)supported by Natural Science Foundation of Chongqing,ChinaProject(KJ-2018016)supported by Science and Technology Project of Planning and Natural Resources Bureau of Chongqing Government,China。
文摘On the eve of the occurrence of geological hazards,part of the rock and soil body begins to burst,rub,and fracture,generating infrasound signals propagating outward.3D advanced positioning of the landslide has remained unsolved,which is important for disaster prevention.Through the Fourier transform and Hankel transform of the wave equation in cylindrical coordinates,this work established a three-dimensional axisymmetric sound field model based on normal waves,and designed a 4-element helix triangular pyramid array with vertical and horizontal sampling capabilities.Based on this,the three-dimensional matching localization algorithm of infrasound for geological hazards is proposed.Applying the algorithm to the infrasound signal localization of rock and soil layers,it was found that the helix triangular pyramid array can achieve accurate estimation of depth and distance with a smaller number of array elements than the traditional array,and may overcome the azimuth symmetry ambiguity.This study shows the application prospects of this method for predicting geohazards position several hours in advance.
基金the National Natural Science Foundation of China(No.61234001)
文摘Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm.
基金Supported by NSFC Project 19971057, Science and Technology Foundation of Shanhai Higher Eduction Project 03DZ04, and The Special Funds for Major Specialities of Shanghai Eduction Committee. Partly supported by Chinese Scholarship Council.
文摘A Leverrier-like algorithm is presented which allows the computation of the transfer function of a linear regular system from its m-D state-space description,without inverting a multivariable polynomial matrix. This algorithm is an extension of the classic Leverrier's algorithm for 1-D system and it reduces the computational cost.ra-D Cayley-Hamilton theorem is also shown by the algorithm.