期刊文献+
共找到9,852篇文章
< 1 2 250 >
每页显示 20 50 100
Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity
1
作者 ZHENG Haifeng GUO Xingzhe +5 位作者 WEI Yunwei WANG Xinfang QI Huimin YAN Yuting ZHANG Jie LI Bingwen 《无机化学学报》 北大核心 2026年第1期193-202,共10页
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul... The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276. 展开更多
关键词 PYRENE metal-organic frameworks composite catalyst oxygen evolution reaction density functional theory
在线阅读 下载PDF
CoMoNiO-S/nickel foam heterostructure composite for efficient oxygen evolution catalysis performance
2
作者 YANG Hong SHAO Shengjuan +2 位作者 LI Baoyi LU Yifan LI Na 《无机化学学报》 北大核心 2026年第1期203-215,共13页
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and... A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure. 展开更多
关键词 oxygen evolution reaction VULCANIZATION composite electrocatalyst MoNi-based catalyst
在线阅读 下载PDF
S-scheme unidirectional transmission of CdS-CuO heterojunction benefits for superior photocatalytic hydrogen evolution efficiency
3
作者 ZHAO Haiting YAN Zheng +2 位作者 LIU Yang JIANG Longde LUAN Jingde 《燃料化学学报(中英文)》 北大核心 2026年第1期1-14,共14页
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ... The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion. 展开更多
关键词 photocatalytic hydrogen evolution CdS-CuO S-scheme heterojunction electron directional transmission interfacial electric field DFT calculation
在线阅读 下载PDF
Synergistic Oxygen Vacancy and Ru-N Coordination in RuO_(2)@NCC for Enhanced Acidic Oxygen Evolution Reaction
4
作者 Mi Luo Linyao Huang +2 位作者 Chen Shen Tianhua Yang Chenguang Wang 《Carbon Energy》 2026年第1期115-125,共11页
Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a fo... Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies. 展开更多
关键词 OVSM-LOM oxygen evolution reaction oxygen vacancy Ru-N XAFS
在线阅读 下载PDF
The historical evolution of the Serbisütherapy in traditional Mongolian medicine,from its origins to contemporary practice
5
作者 Mei-Ri Na Manda Manda +1 位作者 Temuqile Temuqile De-Zhi Yang 《History and Philosophy of Medicine》 2026年第1期43-48,共6页
Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philologica... Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems. 展开更多
关键词 Serbisütherapy traditional Mongolian medicine THERMOTHERAPY historical evolution integrative medicine
暂未订购
Microstructure evolution and corrosion behavior of refill friction stir spot welding joint for dissimilar Al alloys
6
作者 Fang-yuan JIANG Da ZHANG +3 位作者 Yan-kun MA Jiang-tao XIONG Wei GUO Jing-long LI 《Transactions of Nonferrous Metals Society of China》 2026年第1期80-95,共16页
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ... The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure. 展开更多
关键词 refill friction stir spot welding high strength Al alloy dissimilar joint microstructure evolution corrosion behavior
在线阅读 下载PDF
Efficient oxygen evolution in acidic electrolysis of water using copper loaded with iridium nanoclusters
7
作者 Yanan Song Bingxin Zhang +5 位作者 Tai Xiang Huabin Wang Yong Zhang Xiaoning Tang Lin Tian Rui Xu 《Journal of Environmental Sciences》 2026年第1期120-129,共10页
Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the... Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the preparation of a series of novel copper iridium nanocatalysts with heterostructures and low iridium content for OER.The electrochemical tests revealed higher OER of Cu@Ir_(0.3) catalyst under acidic conditions with a generated current density of 10 mA/cm^(2) at only 284 mV overpotential.The corresponding OER mass activity was estimated to be 1.057 A/mgIr,a value 8.39-fold higher than that of the commercial IrO_(2).After 50 h of endurance testing,the Cu@Ir_(0.3) catalyst preserved excellent catalytic activity with a negligible rise in overpotential and maintained a good heterostructures.Cu@Ir_(0.3) The excellent OER activity can be attributed to its heterostructure,as con-firmed by density functional theory(DFT)calculations,indicating that Cu@Ir The coupling between isoquanta causes charge redistribution,optimizing the adsorption energy of unsaturated Ir sites for oxygen intermediates and reducing the energy barrier of OER free energy determining the rate step.In summary,this method provides a new approach for designing efficient,stable,and low iridium content OER catalysts. 展开更多
关键词 Heterostructure Oxygen evolution reaction(OER) ELECTROCATALYSIS Density functional theory(DFT)
原文传递
Using Agent-Based Modeling to Study the Adaptation and Evolution of Human Emotions and Cognition
8
作者 Duan Qin Luo Siyang 《心理科学》 北大核心 2025年第6期1314-1332,共19页
This review explores the use of agent-based modeling(ABM)within the framework of study human emotion and cognition in the context of its ability to simulate complex social interactions,adaptive changes,and evolutionar... This review explores the use of agent-based modeling(ABM)within the framework of study human emotion and cognition in the context of its ability to simulate complex social interactions,adaptive changes,and evolutionary processes.By representing agents and their defined environments with probabilistic interactions,ABM allows the assessment of the effects of individual behavior at the micro level on the greater social phenomena at the macro level.The review looks into the applications of ABM in portraying some of the key components of emotions and cognition-empathy,cooperation,decision making,and emotional transmission-and analyzes the problems including scalability,empirical validation,and description of sensitive emotional states.The most important conclusion is that merging ABM with information neurobiological data and artificial intelligence(AI)techniques would allow for deepening the interactions within the system and enhancing its responsiveness to stimuli.This review highlights approaches that aim to exploit the ABM methodology more fully and integrates methods from biology,neuroscience,and engineering.This integration could contribute to our understanding of the human behavior evolution and adaptation within systems relevant to policymaking,healthcare,and education. 展开更多
关键词 agent-based modeling emotions evolution cognition evolution social interactions
原文传递
Canalization of globins in the adaptive evolution of birds
9
作者 Xiaojia Zhu Le Yang +5 位作者 Quanjian Tao Xiran Wang Ghulam Nabi Fumin Lei Xiaoping Yu Dongming Li 《Avian Research》 2025年第4期764-774,共11页
The globin superfamily,central to oxygen(O_(2))cascade dynamics,exemplifies how canalization—evolutionary stabilization of phenotypic traits—enables vertebrates to thrive in extreme environments.In birds,hemoglobins... The globin superfamily,central to oxygen(O_(2))cascade dynamics,exemplifies how canalization—evolutionary stabilization of phenotypic traits—enables vertebrates to thrive in extreme environments.In birds,hemoglobins(Hbs)serve as a paradigm of this process,with structural and functional canalization underpinning their exceptional aerobic capacity and elevational diversification.Despite significant advances of globins in our understanding of avian aerobic adaptation,a comprehensive synthesis of functional diversity,molecular evolution,and structural innovation is essential to fully elucidate their canalized roles in O_(2)homeostasis.Integrating perspectives on globin functional diversity and structural evolution,this review examines how chance(mutation/fixation biases)and contingency(historical genetic/epistatic constraints)shape Hb divergence and parallelism,thereby bridging molecular mechanisms with physiological adaptation in birds.We highlight how avian Hbs,canalized through compensatory substitutions and allosteric regulation,achieves a balance between evolutionary robustness and adaptive plasticity.However,critical gaps remain persist:the roles of understudied globins(e.g.,neuroglobin,globin E)and the mechanisms of genetic assimilation in migratory taxa.We propose an integrative framework that incorporates ecological divergence(elevation,flight endurance),phylogenetic timescales,and systems biology to unravel how canalization directs adaptive compromise.By focusing on birds within the amniotes,this synthesis advances a cohesive model for vertebrate evolution,wherein canalized globins reconcile metabolic precision with ecological innovation.Ultimately,this review refines hypotheses of O_(2)cascade evolution and calls for cross-disciplinary studies to decode the genetic and physiological architecture underlying adaptive canalization in extreme environments. 展开更多
关键词 Adaptive evolution Genetic canalization Globin superfamily HEMOGLOBINS Oxygen cascade Structural evolution
在线阅读 下载PDF
Covalent organic framework assisted low-content ultrafine Ru on porous N-doped carbon for efficient hydrogen evolution reaction
10
作者 Kong-Gang Qu Zhi-Fei Chen +6 位作者 Li-Hui Wang Hai-Bo Li Su-Yuan Zeng Rui Li Li-Jian Meng Hong-Yan Chen Qing-Xia Yao 《Rare Metals》 2025年第3期2094-2102,共9页
Pt-based materials are the benchmarked catalysts in the cathodic hydrogen evolution reaction(HER)of water splitting;the prohibitive cost and scarcity of Pt immensely impede the commercialization of hydrogen energy.Ru ... Pt-based materials are the benchmarked catalysts in the cathodic hydrogen evolution reaction(HER)of water splitting;the prohibitive cost and scarcity of Pt immensely impede the commercialization of hydrogen energy.Ru has aroused significant concern because of its Pt-like activity and much lower price.However,it’s still a top priority to minimize the Ru loading and pursue the most superior cost performance. 展开更多
关键词 porous n doped carbon most superior cost performance hydrogen evolution reaction water splittingthe cost performance cathodic hydrogen evolution reaction her covalent organic framework ultrafine Ru
原文传递
Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery
11
作者 Yukang Xiong Lin Lv +3 位作者 Guokun Ma Hanbin Wang Houzhao Wan Hao Wang 《Chinese Journal of Structural Chemistry》 2025年第11期17-27,共11页
Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocata... Addressing the kinetic limitations of oxygen evolution reaction(OER)is paramount for advancing rechargeable Zn-air batteries,thus it is extremely urgent to drive the development of effective and affordable electrocatalysts.This work constructs the interfacial structure of cobalt-iron alloys@phosphates(denoted as CoFe/CoFePO)as OER catalyst through a two-step approach using water-bath and hydrothermal methods,which demonstrated significant OER activity in alkaline media,requiring a low overpotential of 271 mV to achieve 10 mA cm^(−2) and exhibiting a competitive Tafel slope of 65 mV dec^(-1),alongside sustained operational stability.The enhanced performance can be attributed to the improved electrical conductivity due to the participation of CoFe alloys and the increased number of active sites through partial phosphorylation,which synergistically enhances charge transfer processes and accelerates OER kinetics.Moreover,dynamic structural evolution during OER process was thoroughly probed,and the results show that alloys@phosphates gradually evolve into phosphate radicalmodified CoFe hydroxyoxides that act as the actual active phase.Highlighting its practical applicability,the integration of prepared catalyst into zinc-air batteries leads to markedly improved performance,thereby offering promising new strategic directions for the development of next-generation OER electrocatalysts. 展开更多
关键词 Zn-air battery ELECTROCATALYST Interfacial structure Oxygen evolution reaction Structural evolution
原文传递
Cambrian-Devonian paleogeographic evolution of the western and central segments of North Africa
12
作者 Yilin Li Zhiqiang Feng +4 位作者 Naixi Zheng Lei Li Zongfeng Li Hancheng Ji Zhidong Bao 《Energy Geoscience》 2025年第3期50-64,共15页
This study reconstructs the lithofacies and paleogeographic evolution of North Africa during the Cambrian to Devonian periods,emphasizing the influence of tectonic events,sea-level fluctuations,and climatic changes on... This study reconstructs the lithofacies and paleogeographic evolution of North Africa during the Cambrian to Devonian periods,emphasizing the influence of tectonic events,sea-level fluctuations,and climatic changes on the region's depositional systems and basin development.Integrating seismic,well log,and core data,we identify key depositional patterns and their implications for hydrocarbon exploration.During sedimentation of diverse stages,the source-to-sink systems underwent significant transitions under provenance variation.During the Cambrian-Ordovician periods,intracratonic sag basins dominated,with braided river systems transitioning into glacial deposits in response to climatic cooling and glaciation.Under the control of the source-to-sink system,Silurian witnessed the opening of the Paleo-Tethys Ocean,leading to extensive marine transgressions and the deposition of organic-rich shales of the Lower Silurian,a primary hydrocarbon source rock.Regression during the Late Silurian introduced deltaic and fluvial systems,influenced by tectonic uplifting.During the Devonian period,the Hercynian Orogeny significantly impacted basin architecture,facilitating the development of passive margin basins.Braided and meandering river systems transitioned into deltaic and shallow marine environments,with Late Devonian anoxic conditions fostering the formation of additional hydrocarbon source rocks.This research highlights the interplay of tectonics,climate,and sea-level changes in shaping North Africa's sedimentary history.The findings provide critical insights into the distribution of hydrocarbon source and reservoir rocks,offering valuable guidance for exploration and development in the region. 展开更多
关键词 evolution of the Tethys Ocean Lithofacies paleogeography Depositional evolution Source-to-sink system North Africa
在线阅读 下载PDF
Iridium-based electrocatalysts for acidic oxygen evolution reaction
13
作者 Yanhui Yu Gai Li +10 位作者 Yutong Xiao Chi Chen Yuhang Bai Tianjiao Wang Jing Li Yingjie Hua Daoxiong Wu Peng Rao Peilin Deng Xinlong Tian Yuliang Yuan 《Journal of Energy Chemistry》 2025年第4期200-224,共25页
Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong... Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented. 展开更多
关键词 ELECTROLYSIS Water splitting Oxygen evolution reaction Ir-based catalysts Oxygen evolution reaction mechanisms
在线阅读 下载PDF
Unveiling complexities:Reviews on insights into the mechanism of oxygen evolution reaction
14
作者 Pengxiang Zhang Jiawen Wang +7 位作者 Tianyu Yang Ruizhe Wang Ruofan Shen Zhikun Peng Yanyan Liu Xianli Wu Jianchun Jiang Baojun Li 《Chinese Journal of Catalysis》 2025年第5期48-83,共36页
The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the ... The study of the oxygen evolution reaction(OER)mechanism is vital for advancing our understanding of this pivotal energy conversion process.This review synthesizes recent advancements in OER mechanism,emphasizing the intricate relationship between catalytic mechanisms and catalyst design.This review discusses the connotation and cutting-edge progress of traditional mechanisms such as adsorbate evolution mechanism(AEM)and lattice oxygen mechanism(LOM)as well as emerging pathways including oxide path mechanism(OPM),oxo-oxo coupling mechanism(OCM),and intramolecular oxygen coupling mechanism(IMOC)etc.Innovative research progress on the coexistence and transformation of multiple mechanisms is highlighted,and the intrinsic factors that influence these dynamic processes are summarized.Advanced characterization techniques and theoretical modeling are underscored as indispensable tools for revealing these complex interactions.This review provides guiding principles for mechanism-based catalyst design.Finally,in view of the multidimensional challenges currently faced by OER mechanisms,prospects for future research are given to bridge the gap between mechanism innovation and experimental verification and application.This comprehensive review provides valuable perspectives for advancing clean energy technologies and achieving sustainable development. 展开更多
关键词 Oxygen evolution reaction Catalytic mechanism Catalyst design Adsorption evolution mechanism Lattice oxygen mechanism
在线阅读 下载PDF
Synthesis of various morphologies of CoFe bimetallic hydroxides for enhanced oxygen evolution reaction performance
15
作者 Liming Yang Yuanbo Cao +7 位作者 Linsong Wang Tao Yang Kang Wang Enhui Wang Xiangtao Yu Hongyang Wang Kuo-Chih Chou Xinmei Hou 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期2024-2033,共10页
CoFe bimetallic hydroxides(CoFe BMHs)find wide applications as excellent catalysts in the field of water splitting.However,no study has systematically investigated the influence of the morphologies of CoFe BMHs on cat... CoFe bimetallic hydroxides(CoFe BMHs)find wide applications as excellent catalysts in the field of water splitting.However,no study has systematically investigated the influence of the morphologies of CoFe BMHs on catalyst performance.In this study,CoFe BMH nanoflowers(CoFe BMH NFs),CoFe BMH nanosheets(CoFe BMH NSHs),CoFe BMH nanorods(CoFe BMH NRs),and CoFe BMH nanospheres(CoFe BMH NSPs)were prepared on nickel foam via a hydrothermal method.CoFe BMH NSHs exhibited the most beneficial catalytic activity.At a current density of 100 mA·cm^(-2),its overpotential for oxygen evolution reaction(OER)was 282 mV,and the overall water splitting voltage was 2.05 V.The double-layer charging capacitance(Cdl)value of CoFe BMH NSHs was the largest in CoFe BMHs,which proves that CoFe BMH NSHs have the largest active area.Furthermore,the active site in the OER process was metal oxyhydroxide(MOOH)through in situ Raman characterization,and the generation of the active substance was an irreversible process.This work provides important insights into the design of catalyst morphologies and offers valuable guidelines for the enhancement of the performance of other catalysts. 展开更多
关键词 bimetallic hydroxides various morphologies hydrogen evolution reaction oxygen evolution reaction overall water splitting
在线阅读 下载PDF
Regulating Reconstruction-Engineered Active Sites of CoP Electrocatalyst by Br Ions During the Oxygen and Hydrogen Evolution Reaction
16
作者 Jing Yao Yuanyuan Zhang +6 位作者 Feng Gao Qi Jin Lirong Zhang Lingling Xu Mingyi Zhang Hong Gao Peng Yu 《Energy & Environmental Materials》 2025年第4期198-206,共9页
An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-... An in-depth understanding of the catalyst surface evolution is crucial for precise control of active sites,yet this aspect has often been overlooked.This study reveals the spontaneous anion regulation mechanism of Br-doped CoP electrocatalysts in the alkaline hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).The introduction of Br modulates the electronic structure of the Co site,endowing Br-CoP with a more metallic character.In addition,P ion leaching promotes the in situ reconstruction of Br-CoOOH,which is the real active site for the OER reaction.Meanwhile,the HER situation is different.On the basis of P ion leaching,the leaching of Br ions promotes the formation of CoP-Co(OH)_(2) active species.In addition,Br doping enhances the adsorption of^(*)H,showing excellent H adsorption free energy,thereby greatly improving the HER activity.Simultaneously,it also enhances the adsorption of OOH^(*),effectively facilitating the occurrence of OER reactions.Br-CoP only needs 261 and 76 mV overpotential to drive the current density of 20 mA cm^(-2) and 10 mA^(-2),which can be maintained unchanged for 100 h.This study provides new insights into anion doping strategies and catalyst reconstruction mechanisms. 展开更多
关键词 anion exchange mechanism Br-CoP hydrogen evolution reaction oxygen evolution reaction surface reconstruction
在线阅读 下载PDF
Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions
17
作者 Yanan Zhou Li Sheng +2 位作者 Lanlan Chen Wenhua Zhang Jinlong Yang 《Chinese Chemical Letters》 2025年第1期637-642,共6页
Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional th... Designing highly active electrocatalysts for the hydrogen evolution reaction(HER)and oxygen evolution and reduction reactions(OER and ORR)is pivotal to renewable energy technology.Herein,based on density functional theory(DFT)calculations,we systematically investigate the catalytic activity of iron-nitrogen-carbon based covalent organic frameworks(COF)monolayers with axially coordinated ligands(denotes as Fe N_(4)-X@COF,X refers to axial ligand,X=-SCN,-I,-H,-SH,-NO_(2),-Br,-ClO,-Cl,-HCO_(3),-NO,-ClO_(2),-OH,-CN and-F).The calculated results demonstrate that all the catalysts possess good thermodynamic and electrochemical stabilities.The different ligands axially ligated to the Fe active center could induce changes in the charge of the Fe center,which further regulates the interaction strength between intermediates and catalysts that governs the catalytic activity.Importantly,FeN_(4)-SH@COF and Fe N_(4)-OH@COF are efficient bifunctional catalysts for HER and OER,FeN_(4)-OH@COF and FeN_(4)-I@COF are promising bifunctional catalysts for OER and ORR.These findings not only reveal promising bifunctional HER/OER and OER/ORR catalysts but also provide theoretical guidance for designing optimum ironnitrogen-carbon based catalysts. 展开更多
关键词 Axial coordinated ligands DFT calculation Hydrogen evolution reaction Oxygen evolution reaction Oxygen reduction reaction
原文传递
Evolution and generation mechanism of retained oil in lacustrine shales:A combined ReaxFF-MD and pyrolysis simulation perspective
18
作者 Biao Sun Xiao-Ping Liu +3 位作者 Jie Liu Tian Liu Zu-Xian Hua Wen-Di Peng 《Petroleum Science》 2025年第1期29-41,共13页
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay... To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil. 展开更多
关键词 Lacustrine shale Retained oiliness evolution Pyrolysis simulation experiments ReaxFF molecular dynamics Hydrocarbon generation evolution
原文传递
Co(OH)_(2) vs.CoOOH:understanding the origin of in-situ converted catalyst's high catalytic activity towards oxygen evolution reaction
19
作者 Xiao-Qian Ren Meng-Xin Chen +11 位作者 Xun Cao Yu-Long Dai Wen-Xiao Yu Zhe Liu Xin-Xin Wen Guo-Xin Ma Bing-Rong Guo Sze-Xing Tan Jia Liu Ping Xu Jia-Jian Gao Si-Wei Li 《Rare Metals》 2025年第8期5498-5511,共14页
Metal oxohydroxides(MOOH) are widely accepted as the true active species for oxygen evolution reaction(OER).However,the MOOH converted from precatalysts usually exhibits better catalytic performance than those directl... Metal oxohydroxides(MOOH) are widely accepted as the true active species for oxygen evolution reaction(OER).However,the MOOH converted from precatalysts usually exhibits better catalytic performance than those directly synthesized.The underlying structural reason for this phenomenon remains controversial.In this work,CoOOH and Co(OH)2with similar morphology are employed as model catalysts to investigate the origin of in-situ converted catalyst s high activity,as Co(OH)2can be fully converted to CoOOH during OER.In-situ Raman,electron paramagnetic resonance,HR-TEM,and X-ray spectroscopic studies reveal that O vacancies in the CoOOH converted from Co(OH)2play a key role in its higher intrinsic activity towards OER than directly synthesized CoOOH.Furthermore,theoretical calculations and electrochemical methods indicate that O vacancies in CoOOH affect the interaction between Co-O bond,downshift the d-band center of Co,further weaken the adsorption of OH*,and finally facilitate the OER process over CoOOH.This work not only provides a deep understanding of pre-catalyst's high OER activity by taking Co(OH)2as an example but also deliver insights into the activation process of other electrochemic al oxidation reactions. 展开更多
关键词 Oxygen evolution reaction COOOH Structural evolution O vacancies
原文传递
Deep-sea Evolution Unlocked
20
《Bulletin of the Chinese Academy of Sciences》 2025年第1期15-15,共1页
The hadal zone-Earth’s deepest oceanic trenches below 6,000 meters-has long been considered a lifeless abyss.Researchers from the Institute of Hydrobiology(IHB)and the Institute of Deep-Sea Science and Engineering(ID... The hadal zone-Earth’s deepest oceanic trenches below 6,000 meters-has long been considered a lifeless abyss.Researchers from the Institute of Hydrobiology(IHB)and the Institute of Deep-Sea Science and Engineering(IDSSE),both under the Chinese Academy of Sciences,together with collaborators from Northwestern Polytechnical University,recently decoded how fish thrive in this extreme realm through two evolutionary pathways while uncovering alarming traces of human pollution in these pristine ecosystems.Their discovery was published in Cell on March 6,2025. 展开更多
关键词 human pollution hadal zone deep sea evolution evolutionary pathways oceanic trenches fish
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部