Hafnium carbonitride(HfC_(x)N_(1-x))ceramics have drawn considerable interest due to their exceptional me-chanical and thermophysical properties.Herein,we report a novel single-source precursor with Hf-N bonds as the ...Hafnium carbonitride(HfC_(x)N_(1-x))ceramics have drawn considerable interest due to their exceptional me-chanical and thermophysical properties.Herein,we report a novel single-source precursor with Hf-N bonds as the main chain and fabricate HfC_(x)N_(1-x)ceramics after pyrolysis of the precursor.The synthesis,ceramic conversion,and microstructural evolution of the single-source precursor as well as the derived HfC_(x)N_(1-x)ceramics treated under various atmospheres were investigated.The results indicate that in an argon atmosphere,the nitrogen content within HfC_(x)N_(1-x)decreases with rising temperature.While under a nitrogen atmosphere,the high concentration of N_(2)facilitates the rapid conversion of HfO2 to Hf7O8N4,which subsequently promotes the transformation of the HfC_(x)N_(1-x)solid solution ceramics.During this process,there is also an inhibitory effect of N_(2)on the tendency of HfN into HfC.Moreover,the desired chemical composition of HfC_(x)N_(1-x)can be regulated by adjusting the N_(2)concentration in the heat treat-ment atmosphere.The present work proposes a novel strategy for the single-source precursor-derived carbonitride ceramics and provides a deep understanding of the preparation and property modulation of HfC_(x)N_(1-x)ceramics.展开更多
Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of pol...Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.展开更多
Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we repo...Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.展开更多
Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,...Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials.展开更多
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama...Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.展开更多
The types of dopants lead to distinctive microstructural evolution behavior and physical properties in materials.In this study,the effect of stoichiometric and non-stoichiometric Mn modification,namely Pb(Mn_(1/3) Nb_...The types of dopants lead to distinctive microstructural evolution behavior and physical properties in materials.In this study,the effect of stoichiometric and non-stoichiometric Mn modification,namely Pb(Mn_(1/3) Nb_(2/3))O_(3)(PMnN)and MnO_(2),on the microstructure and properties of Pb(Yb_(1/2) Nb_(1/2))O_(3)-PbZrO_(3)-PbTiO_(3)(PYN-PZT)piezoelectric ceramics are systematically investigated.It was found that stoichiometric PMnN modification inhibits the grain growth while non-stoichiometric MnO2 modification promotes it,and thus the former yields stronger high-power characteristics(higher internal bias field Ei and larger mechanical quality factor Qm)than the latter.Specifically,with an equivalent amount of Mn modifica-tion(2 mol%),PMnN and MnO_(2) modification PYN-PZT ceramics exhibit significantly different values for average grain size(1.21μm vs.14.12μm),Ei(8.5 kV/cm vs.5 kV/cm),and Qm(2376 vs.1134).To further evaluate high-power performance,the vibration velocity v of these two modified PYN-PZT under high driving conditions was measured.Under an AC electric field of 3.5 V/mm,the PYN-PZT+6PMnN ceram-ics exhibit a v of up to 0.95 m s^(−1),larger than both MnO2-doped PYN-PZT(0.72 m s^(−1))and unmodified PYN-PZT ceramics(0.1 m s^(−1)),and far outperformance than both PZT-4 and PZT-8 ceramics.Furthermore,to elucidate the origin of the exceptional high-power performance of PMnN-modified PYN-PZT,we per-formed phase-field simulations revealing a pinning effect of the grain boundary on domain wall motion.Consequently,the small grain size(high grain boundary density)in PMnN-modified PYN-PZT exhibits a strong pinning effect,resulting in a large Qm and outstanding high-power performance.展开更多
The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this wor...The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.展开更多
With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences too...With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.展开更多
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin...As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.展开更多
The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which ha...The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which hampers their conversion into boride-based ultrahigh temperature ceramics.To tackle these challenges,a serious of pioneering liquid multi-component hafnium-containing ceramic SiHfCB precursors(with different Hf/Si ratios)have been developed.These novel precursors are featured with stable molec-ular structure and high ceramic yield which were successfully created through a novel one-pot polymer-ization process.They present in liquid form and their structure is characterized by C-C bonds forming its main chain with branched chains of O-Si-O,Si-O-Hf,Si-O-B,and B-O-Hf which have untapped advantages including uniform component dispersion,and excellent fluidity.The ceramic yield of SiHfCB precursor with Hf/Si of 0.2 is remarkably up to 68.6 wt.%at 1500℃,and their Hf content exceeded 50 wt.%.Of particular interest,the pyrolyzed product HfB_(2)-SiC nanopowders derived from the SiHfCB precursor with Hf/Si of 0.2,consist of nanopowders in the 40-60 nm range with a density of 5.23 g cm^(−3).Remarkably,this material demonstrates exceptional performance in ultrahigh temperature oxygen-containing environ-ments at 2500℃,showing near-zero ablation with a linear ablation rate of just 2.5×10^(−4) mm s^(−1).Post-ablation analysis of the microstructure reveals that the formation of a lava-like HfO_(2) and HfO_(2)-SiO_(2) oxide layer effectively blocks oxygen penetration and provides excellent oxidation resistance.The inno-vative SiHfCB hafnium-containing ceramic precursor offers a groundbreaking solution for the preparation of lightweight ultrahigh-temperature ceramics.This development is poised to provide robust technical support for the use of ultrahigh temperature ceramics in non-ablative thermal protective systems,partic-ularly in the construction of hypersonic vehicles,where ultrahigh temperature resilience is crucial.展开更多
As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has...As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has been widely utilized for ceramic-metal heterogeneous joints.However,the residual stress relief in these welding joints is complicated and necessary.Because metals and ceramics have different properties,especially their coefficients of thermal expansion.Welding joints exhibit large residual stresses during the cooling process.The relatively high residual stresses may significantly degrade the joint properties.For this issue,four alleviation routes were reviewed:optimization of process parameters,setting an intermediate layer,surface structure modulation and particle-reinforced composite solder.The states and distribution patterns of residual stress in ceramic-metal brazed joints were summarized,and the generation and detection of residual stress were introduced.Eventually,upcoming prospects and challenges of residual stress research on ceramic/metal heterostructures were pointed out.展开更多
Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suita...Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.展开更多
ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(...ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.展开更多
High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)...High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.展开更多
Porous ceramic filters are key components in high-temperature metal-melt filtration processes.Mullite ceramics are widely used owing to their good high-temperature resistance,excellent chemical stability,and solid was...Porous ceramic filters are key components in high-temperature metal-melt filtration processes.Mullite ceramics are widely used owing to their good high-temperature resistance,excellent chemical stability,and solid waste green synthesis characteristics.However,traditional manufacturing processes face challenges in pore structure control for mullite ceramics and obtaining desirable mechanical properties,which limits their application.Recently,ceramic 3D-printing technology has emerged as a research hotspot,and its effectiveness for manufacturing complex 3D porous ceramic structures and controlling their mechanical properties has been demonstrated.This paper provides a detailed overview of the precursor system and toughening mechanisms of mullite,3D-printing technology for mullite ceramics,3D porous structure design for filters,and the melt purification mechanisms of these filters.The objective of this study was to use 3D-printing technology to efficiently manufacture mullite ceramic filter elements with customized structures,controllable pore characteristics,and desirable mechanical properties.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)prec...Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.展开更多
1 Fascinated by the beauty of white Chinese porcelain(瓷),Marc Leuthold has spent two months creating contemporary artworks using the local clay and firing methods of Quyang,a county in Hebei Province,with over a thou...1 Fascinated by the beauty of white Chinese porcelain(瓷),Marc Leuthold has spent two months creating contemporary artworks using the local clay and firing methods of Quyang,a county in Hebei Province,with over a thousand years of ceramic⁃making history.2 Leuthold,an elected lifetime member of the International Academy of Ceramics and a retired professor from the State University of New York,has been invited to around 20 Chinese cities to exhibit,lecture and exchange ideas.He also worked full⁃time at an art institute in Shanghai from 2018 to 2023.展开更多
The highly transparent novel high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic was successfully fabri-cated by the addition of 3 at.%ZrO_(2) and 10 at.%La_(2)O_(3) introduced as sintering additive...The highly transparent novel high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic was successfully fabri-cated by the addition of 3 at.%ZrO_(2) and 10 at.%La_(2)O_(3) introduced as sintering additives via vacuum sin-tering.A single-phase solid solution cubic structure of the ceramic was obtained with a relative density of 99.95%and an average grain size of 6.91±3.28μm.The grain boundary of the(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic was clean with a thickness of only 1.3 nm.Further observations revealed uniform distribu-tion of all elements in the grains,and the presence of La and Zr segregation(1.5 nm thick)at few grain boundaries,but causing very little light scattering.The in-line transmittance of high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic reached 80%at 1100 nm,which was 98.7%of the theoretical value of Er_(2)O_(3) single crystal.Also,there were fluorescence emissions observed in the ultraviolet(311 nm),vis-ible(563,622 nm),and near-infrared(1032,1535 nm)regions.In addition,the intense red emission and weak green emission were detected,and the broad emission with a peak at 1.5μm was attributed to Stark splitting of Er3+ions,so the corresponding mechanism was discussed.Results obtained suggest that the highly transparent novel high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic fabricated in this study could have broad application prospects in optical applications such as scintillators,up-conversion luminescent materials,and infrared lasers.展开更多
Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechani...Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechanical properties of carbon fibers, and therefore affect the overall performance of pultruded composites. This study systematically investigated the influence of PAN precursor properties on the degree of graphitization, surface morphology and mechanical properties of carbon fibers by regulating the molecular weight distribution, stretching ratio and impurity content of PAN precursor, and analyzed the mechanism of action of carbon fiber properties on the interfacial bonding strength and tensile/ bending properties of composites in combination with the pultrusion process. The results showed that when the filament stretchability was increased to 4.5 times, the axial orientation of carbon fibers increased by 18% and the tensile strength reached 520 MPa;Filaments with impurity content below 0.3% increase carbon fiber yield by 5.2% and interlaminar shear strength of composites by 23%. This study provides a theoretical basis for raw material screening and process optimization of high-performance carbon fibers and their composites.展开更多
基金supported by the National Key R&D Program of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373 and 52130205)+3 种基金the Special Funds of the National Natural Science Foun-dation of China(Grant No.52342207)the National Science and Technology Major Project(Grant No.J2022-VI-0011-0042)the Joint Fund of Henan Province Science and Technology R&D Program(Grant No.225200810002)the Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratory(Grant No.JCKYS2024607001-1).
文摘Hafnium carbonitride(HfC_(x)N_(1-x))ceramics have drawn considerable interest due to their exceptional me-chanical and thermophysical properties.Herein,we report a novel single-source precursor with Hf-N bonds as the main chain and fabricate HfC_(x)N_(1-x)ceramics after pyrolysis of the precursor.The synthesis,ceramic conversion,and microstructural evolution of the single-source precursor as well as the derived HfC_(x)N_(1-x)ceramics treated under various atmospheres were investigated.The results indicate that in an argon atmosphere,the nitrogen content within HfC_(x)N_(1-x)decreases with rising temperature.While under a nitrogen atmosphere,the high concentration of N_(2)facilitates the rapid conversion of HfO2 to Hf7O8N4,which subsequently promotes the transformation of the HfC_(x)N_(1-x)solid solution ceramics.During this process,there is also an inhibitory effect of N_(2)on the tendency of HfN into HfC.Moreover,the desired chemical composition of HfC_(x)N_(1-x)can be regulated by adjusting the N_(2)concentration in the heat treat-ment atmosphere.The present work proposes a novel strategy for the single-source precursor-derived carbonitride ceramics and provides a deep understanding of the preparation and property modulation of HfC_(x)N_(1-x)ceramics.
基金supported by Natural Science Basic Research Pro-gram of Shaanxi in China(Grant.No.2023-JC-YB-388)National Nat-ural Science Foundation of China(Grant.No.52005392)Fundamental Research Funds for the Central Universities in China,and the Youth In-novation Team of Shaanxi Universities in China.
文摘Si_(3)N_(4)/SiCN ceramics have been extensively explored for applications in the aerospace,mechanical engineering,and biomedical fields.Recently,there has been significant focus on the additive manufacturing(AM)of polymer-derived ceramic(PDC)technology for fabricating Si_(3)N_(4)/SiCN ceramics.The chemical structure and composition of the preceramic polymer precursors have a crucial influence on the performance of ceramic products.In this paper,recent advances in the use of polysilazane and polycarbosilazane precursors in AM are reviewed and an outlook for future development is presented.The findings of this study could spark inspiration and reflection regarding AM applications and synthetic technology.It is believed that the development of PDCs in ceramic fabrication will become more versatile and application-oriented and provide more freedom in the design of high-performance ceramics.
基金Project supported by the Key Research and Develop Projects in Gansu Province(Grant No.23YFGA0002)the project funding of Audiowell Electronics(Guangdong)Co.,Ltd.
文摘Piezoelectric ceramic materials are important components of piezoelectric buzzers,where the parameter of inverse piezoelectric coefficient(d_(33)^(*))plays a decisive role in the performance of the buzzer.Here,we report the manufacture and performance of a lead-free ceramic-based(0.96(K_(0.5)Na_(0.5))(Nb_(0.96)Sb_(0.04))O_(3)-0.04(Bi_(0.5)Na_(0.5))ZrO_(3)-1 mol%Al_(2)O_(3),abbreviated as KNNS-BNZ-1 mol%Al_(2)O_(3))piezoelectric buzzer and compare it with commercial(PbZr_(0.5)Ti_(0.5)O_(3),abbreviated as PZT)ceramics.Briefly,KNN-based ceramics have a typical perovskite structure and piezoelectric properties of d_(33)=480 pC/N,k_(p)=0.62 and d_(33)^(*)=830 pm/V,compared to d_(33)=500 pC/N,k_(p)=0.6 and d_(33)^(*)=918 pm/V of the commercial PZT-4 ceramics.Our results show that the KNNS-BNZ-1 mol%Al_(2)O_(3)ceramics have a similar sound pressure level performance over the testing frequency range to commercial PZT ceramics(which is even better in the 3-4 kHz range).These findings highlight the great application potential of KNN-based piezoelectric ceramics.
文摘Thermal and mechanical properties of yttrium tantalate(YTaO_(4)),a top coat ceramic of thermal barrier coatings(TBCs)for aeroengines,are enhanced by synthesizing Y_(1-x)Ta_(1-x)M_(2x)O_(4)(M=Ti,Zr,Hf;x=0.06,0.12,0.18,0.24)medium-entropy ceramics(MECs)using a two-step sintering method.In addition,the thermal conductivity,thermal expansion coefficients(TECs),and fracture toughness of MECs were investigated.An X-ray diffraction study revealed that the Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs were monoclinic,and the Ti,Zr,and Hf doping elements replaced Y and Ta.The variations in atomic weights and ionic radii led to disturbed atomic arrangements and severe lattice distortions,resulting in improving the phonon scattering and reduced thermal conductivity,with Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)exhibiting the lowest thermal conductivity of 1.23 W·m^(-1)·K^(-1)at 900℃.The introduction of MO_(2) increased the configurational entropy and weakened the ionic bonding energy,obtaining high TECs(10.4×10^(-6)K^(-1)at 1400℃).The reduction in the monoclinic angle β lowered the ferroelastic domain inversion energy barrier.Moreover,microcracks and crack extension toughening endowed Y_(1-x)Ta_(1-x)M_(2x)O_(4) MECs(x=0.24)with the highest fracture toughness of(4.1±0.5)MPa·m~(1/2).The simultaneous improvement of the thermal and mechanical properties of the MO_(2)(M=Ti,Zr,Hf)co-doped YTaO_(4) MECs can be extended to other materials.
基金supports from National Natural Science Foundation of China(Grant No.52105498)The science and technology innovation Program of Hunan Province(Grant No.2021RC3074)+2 种基金Advanced Laser Technology Laboratory of Anhui Province(AHL2022KF04)National Key R&D Program of China(Grant No.2023YFB14605500)Changsha Natural Science Foundation(kq2402089).
文摘Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.
基金supported by the National Key Research and Development Program of China(No.2023YFF0720700)the National Natural Science Foundation of China(Nos.52032010 and 52272120)the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(No.2022ZYD0018).
文摘The types of dopants lead to distinctive microstructural evolution behavior and physical properties in materials.In this study,the effect of stoichiometric and non-stoichiometric Mn modification,namely Pb(Mn_(1/3) Nb_(2/3))O_(3)(PMnN)and MnO_(2),on the microstructure and properties of Pb(Yb_(1/2) Nb_(1/2))O_(3)-PbZrO_(3)-PbTiO_(3)(PYN-PZT)piezoelectric ceramics are systematically investigated.It was found that stoichiometric PMnN modification inhibits the grain growth while non-stoichiometric MnO2 modification promotes it,and thus the former yields stronger high-power characteristics(higher internal bias field Ei and larger mechanical quality factor Qm)than the latter.Specifically,with an equivalent amount of Mn modifica-tion(2 mol%),PMnN and MnO_(2) modification PYN-PZT ceramics exhibit significantly different values for average grain size(1.21μm vs.14.12μm),Ei(8.5 kV/cm vs.5 kV/cm),and Qm(2376 vs.1134).To further evaluate high-power performance,the vibration velocity v of these two modified PYN-PZT under high driving conditions was measured.Under an AC electric field of 3.5 V/mm,the PYN-PZT+6PMnN ceram-ics exhibit a v of up to 0.95 m s^(−1),larger than both MnO2-doped PYN-PZT(0.72 m s^(−1))and unmodified PYN-PZT ceramics(0.1 m s^(−1)),and far outperformance than both PZT-4 and PZT-8 ceramics.Furthermore,to elucidate the origin of the exceptional high-power performance of PMnN-modified PYN-PZT,we per-formed phase-field simulations revealing a pinning effect of the grain boundary on domain wall motion.Consequently,the small grain size(high grain boundary density)in PMnN-modified PYN-PZT exhibits a strong pinning effect,resulting in a large Qm and outstanding high-power performance.
基金National Natural Science Foundation of China (52302140)Major Scientific and Technological Innovation Project of Wenzhou (ZG2023040, ZG2023042)Joint Funds of the National Natural Science Foundation of China Key Program (U21B2068)。
文摘The feldspar-based microwave dielectric ceramic with low relative permittivity(εr)and excellent mechanical properties has attracted much attention in the fifth-generation wireless communication technology.In this work,a series of microwave dielectric ceramic SrAl_(2-x)Ga_(x)Si_(2)O_(8)(0.1≤x≤2.0)was synthesized using the traditional solid-state method.X-ray diffraction pattern indicates that Ga^(3+)can be dissolved into Al^(3+),forming a solid solution.Meanwhile,substitution of Ga^(3+)for Al^(3+)can promote the space group transition from I2/c(0.1≤x≤1.4)to P21/a(1.6≤x≤2.0)with coefficient of thermal expansion(CTE)increasing from 2.9×10^(-6)℃^(-1) to 5.2×10^(-6)℃^(-1).During this substitution,the phase transition can significantly improve the structural symmetry to enhance the dielectric properties and mechanical properties.Rietveld refinement results indicate that Ga^(3+)averagely occupied four Al^(3+)compositions to form solid solution.All ceramics have a dense microstructure and high relative density above 95%.An ultralower of 5.8 was obtained at x=1.6 composition with high quality factor(Q´f)of 50700 GHz and negative temperature coefficients of resonant frequency(tf)of approximately−35×10^(-6)℃^(-1).The densification temperature can be reduced to 940℃by adding 4%(in mass)LiF,resulting in good chemical compatibility with Ag electrode.Meanwhile,negativetf can be tuned to near-zero(+3.7×10^(-6)℃^(-1))by adding CaTiO_(3) ceramic.
文摘With rapid advancements in physics and particle medicine,the domestic accelerator industry has grown rapidly.During the 12th Five-Year Plan period,the Institute of Modern Physics of the Chinese Academy of Sciences took on a plurality of accelerator projects.Nevertheless,the stability of the coupler,a crucial system within the cavities of accelerators,has encountered certain difficulties.The alumina ceramics,which constitute the core component of the coupler,are increasingly prone to breakage and solder joint failures due to their inferior environmental adaptability,inadequate mechanical properties,and high gas emissions.Conversely,with the advancements in medical technology and materials science,zirconia ceramics have emerged as a prospective remedy for these problems.This type of ceramic is highly esteemed for its outstanding environmental adaptability,remarkable mechanical properties,and excellent high-temperature resistance,exhibiting extraordinary value in dental applications.This study investigates the use of zirconia ceramics in a 162.5 MHz 3-1/8"standard ceramic window,combining experimental data with finite element RF simulations and multi-physics analysis.A new coupler featuring a zirconia ceramic window was tested on a Quarter-Wave Resonator,demonstrating excellent alignment between electromagnetic simulations and measurement results.This reveals the substantial application potential and practical worth of the zirconia ceramic material in the context of accelerators.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070,51822405)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+6 种基金TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)Aeronautical Science Foundation of China(No.20220042053001)Science and Technology Innovation Team Plan of Shaanxi Province(No.2021TD-17)Key R&D Project of Shaanxi Province(No.2024GX-YBXM-220)Thousands Person Plan of Jiangxi Province(JXSQ2020102131)Fundamental Research Funds for the Central Universities(Nos.D5000230348,D5000220057)China Scholarship Council(Nos.202206290133,202306290190).
文摘As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.
基金supported by the Key Program of the National Natural Science Foundation of China(No.52032003)the Major Program of the National Natural Science Foundation of China(No.52293372)+2 种基金the National Natural Science Foundation of China(No.51972082)the National Natural Science Foundation of China(No.52102093)the National Natural Science Foundation of China(No.52172041)and the science foundation of national key laboratory of science and technology on advanced composites in special environments.
文摘The current generation of ultrahigh temperature ceramic precursors typically encounters obstacles in achieving high ceramic yields(<40 wt.%)due to the challenges in integrating significant amounts of boron,which hampers their conversion into boride-based ultrahigh temperature ceramics.To tackle these challenges,a serious of pioneering liquid multi-component hafnium-containing ceramic SiHfCB precursors(with different Hf/Si ratios)have been developed.These novel precursors are featured with stable molec-ular structure and high ceramic yield which were successfully created through a novel one-pot polymer-ization process.They present in liquid form and their structure is characterized by C-C bonds forming its main chain with branched chains of O-Si-O,Si-O-Hf,Si-O-B,and B-O-Hf which have untapped advantages including uniform component dispersion,and excellent fluidity.The ceramic yield of SiHfCB precursor with Hf/Si of 0.2 is remarkably up to 68.6 wt.%at 1500℃,and their Hf content exceeded 50 wt.%.Of particular interest,the pyrolyzed product HfB_(2)-SiC nanopowders derived from the SiHfCB precursor with Hf/Si of 0.2,consist of nanopowders in the 40-60 nm range with a density of 5.23 g cm^(−3).Remarkably,this material demonstrates exceptional performance in ultrahigh temperature oxygen-containing environ-ments at 2500℃,showing near-zero ablation with a linear ablation rate of just 2.5×10^(−4) mm s^(−1).Post-ablation analysis of the microstructure reveals that the formation of a lava-like HfO_(2) and HfO_(2)-SiO_(2) oxide layer effectively blocks oxygen penetration and provides excellent oxidation resistance.The inno-vative SiHfCB hafnium-containing ceramic precursor offers a groundbreaking solution for the preparation of lightweight ultrahigh-temperature ceramics.This development is poised to provide robust technical support for the use of ultrahigh temperature ceramics in non-ablative thermal protective systems,partic-ularly in the construction of hypersonic vehicles,where ultrahigh temperature resilience is crucial.
基金National Program of Foreign Experts of China(G2023026003L)National Natural Science Foundation of China(52475347)+4 种基金Postdoctoral Fund(2023M740475)International Science and Technology Cooperation Project of Henan Province(242102521057)Frontier Exploration Projects of Longmen Laboratory(LMQYTSKT016)Central Plains Science and Technology Innovation Leading TalentsProvincial Science and Technology R&D Program Joint Fund Projects(235200810030)。
文摘As service conditions become more challenging and production complexity increases,there is an increasing demand for enhanced comprehensive performance of ceramic/metal heterostructures.At present,brazing technique has been widely utilized for ceramic-metal heterogeneous joints.However,the residual stress relief in these welding joints is complicated and necessary.Because metals and ceramics have different properties,especially their coefficients of thermal expansion.Welding joints exhibit large residual stresses during the cooling process.The relatively high residual stresses may significantly degrade the joint properties.For this issue,four alleviation routes were reviewed:optimization of process parameters,setting an intermediate layer,surface structure modulation and particle-reinforced composite solder.The states and distribution patterns of residual stress in ceramic-metal brazed joints were summarized,and the generation and detection of residual stress were introduced.Eventually,upcoming prospects and challenges of residual stress research on ceramic/metal heterostructures were pointed out.
基金Student Training Program for Innovation and Entrepreneurship of Hangzhou Institute for Advanced Study,UCAS(CXCY20230305)Chinese Academy of Sciences Key Project(ZDRW-CN-2021-3-1-18)。
文摘Ceramic dielectric materials with high dielectric strength and mechanisms of their internal factors affecting dielectric strength are significantly valuable for industrial application,especially for selection of suitable dielectric materials for high-power microwave transmission devices and reliable power transmission.Pure magnesium oxide(MgO),a kind of ceramic dielectric material,possesses great application potential in high-power microwave transmission devices due to its high theoretical dielectric strength,low dielectric constant,and low dielectric loss properties,but its application is limited by high sintering temperature during preparation.This work presented the preparation of a new type of multiphase ceramics based on MgO,which was MgO-1%ZrO_(2)-1%CaCO_(3-x)%MnCO_(3)(MZCM_(x),x=0,0.25,0.50,1.00,1.50,in molar),and their phase structures,morphological features,and dielectric properties were investigated.It was found that inclusion of ZrO_(2) and CaCO_(3) effectively inhibited excessive growth of MgO grains by formation of second phase,while addition of MnCO_(3) promoted the grain boundary diffusion process during the sintering process and reduced activation energy for the grain growth,resulting in a lower ceramic sintering temperature.Excellent performance,including high dielectric strength(Eb=92.3 kV/mm)and quality factor(Q×f=216642 GHz),simultaneously accompanying low dielectric loss(<0.03%),low temperature coefficient of dielectric constant(20.3×10^(–6)℃^(–1),85℃)and resonance frequency(–12.54×10^(–6)℃^(–1)),was achieved in MZCM1.00 ceramics under a relatively low sintering temperature of 1350℃.This work offers an effective solution for selecting dielectric materials for high-power microwave transmission devices.
基金National Natural Science Foundation of China (U24A2052)Shanghai Eastern Talent Plan。
文摘ZnAl_(2)O_(4) and ZnAl_(2)O_(4)-based ceramics have attracted much attention from researchers due to their good microwave dielectric,thermal and mechanical properties.In this work,the influence of 5%(in mass)CuO-TiO_(2)-Nb_(2)O_(5)(CTN)ternary composite oxide additives with different composition ratios on sintering behavior and properties of ZnAl_(2)O_(4) microwave dielectric ceramics was investigated.When the molar fraction ranges of Cu,Ti and Nb elements in 5%CTN additives are 0.625-0.875,0-0.250 and 0.125-0.625,respectively,sintering temperature of ZnAl_(2)O_(4) ceramics can be reduced from above 1400℃to below 1000℃.The sintering additives CN(Cu:Nb=1:1,molar ratio)and CTN(Cu:Ti:Nb=4:1:3,molar ratio)can reduce sintering temperature of ZnAl_(2)O_(4) ceramics to 975 and 1000℃,respectively,while maintaining good dielectric properties(dielectric constantε_(r)=11.36,quality factor Q׃=8245 GHz andε_(r)=9.52,Q׃=22249 GHz)and flexural strengths(200 and 161 MPa),which are expected to be applied in preparation of low temperature co-fired ceramic(LTCC)materials with copper electrodes.Low-temperature sintering of the ZnAl_(2)O_(4)+CTN system is characterized as activated sintering.Nanometer-level amorphous interfacial films containing Cu,Ti,and Nb elements are observed at the grain boundaries,which may provide fast diffusion pathways for mass transportation during the sintering process.Valence changes of Ti and Cu ions,along with changes of oxygen vacancies,are confirmed,which provides a potential mechanism for reduced sintering temperature of ZnAl_(2)O_(4) ceramics.In addition,a series of reactions occurring at the grain boundaries can activate these boundaries and further promote the sintering densification process.These results suggest a promising way to design a novel LTCC material with excellent properties based on the low temperature sintering of ceramics with the sintering aid of CuO-TiO_(2)-Nb_(2)O_(5) composite oxide.
基金National Natural Science Foundation of China (51932010)。
文摘High-temperature piezoelectric vibration sensors are the preferred choice for structural health monitoring in harsh environments such as high temperatures and complex vibrations.Bismuth layer-structured CaBi_(4)Ti_(4)O_(15)(CBT)high-temperature piezoelectric ceramics,with high Curie temperature(TC),are the key components for piezoelectric vibration sensors operating at temperatures exceeding 500℃.However,their low piezoelectric coefficient(d_(33))greatly limits their high-temperature applications.In this work,a novel Bi^(3+)self-doping strategy was employed to enhance the piezoelectric performance of CBT ceramics.The enhancement is attributed to an increase in the number of grain boundaries,providing more sites for space charge accumulation and promoting formation of space charge polarization.Furthermore,given that space charge polarization predominantly occurs at low frequencies,dielectric temperature spectra at different frequencies were used to elucidate the mechanism by which space charge polarization enhances piezoelectric properties of CBT ceramics.Excellent overall performance was achieved for the CBT-based high-temperature piezoelectric ceramics.Among them,TC reached 778℃,d_(33) increased by more than 30%,reaching 20.1 pC/N,and the electrical resistivity improved by one order of magnitude(reaching 6.33×10^(6)Ω·cm at 500℃).These advancements provide a key functional material with excellent performance for practical applications of piezoelectric vibration sensors at 500℃and above.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB4601400).
文摘Porous ceramic filters are key components in high-temperature metal-melt filtration processes.Mullite ceramics are widely used owing to their good high-temperature resistance,excellent chemical stability,and solid waste green synthesis characteristics.However,traditional manufacturing processes face challenges in pore structure control for mullite ceramics and obtaining desirable mechanical properties,which limits their application.Recently,ceramic 3D-printing technology has emerged as a research hotspot,and its effectiveness for manufacturing complex 3D porous ceramic structures and controlling their mechanical properties has been demonstrated.This paper provides a detailed overview of the precursor system and toughening mechanisms of mullite,3D-printing technology for mullite ceramics,3D porous structure design for filters,and the melt purification mechanisms of these filters.The objective of this study was to use 3D-printing technology to efficiently manufacture mullite ceramic filter elements with customized structures,controllable pore characteristics,and desirable mechanical properties.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.
基金supported by the National Natural Science Foundation of China(Nos.52374119,42477142 and 42277154)Natural Science Foundation of Jiangsu Province(No.BK20242059)+1 种基金the open fund of State Key Laboratory of Hydraulics and Mountain River Engineering(No.SKHL2306)the High-level Talent Introduction Project of Changzhou University(No.ZMF24020037)。
文摘Rockburst precursors are critical for disaster warning,yet the complexity of rockburst has hindered the identification of a unified precursor.Furthermore,the influence of loading rates(LRs)on acoustic emission(AE)precursors in different rock types remains poorly understood.This study investigates the AE characteristics and early warning times of rockburst in slate and mica-schist under four LRs(0.05,0.15,0.25,and 0.5 MPa/s)using true triaxial unloading tests.The micro-crack state of the samples was evaluated using entropy,while critical slowing down(CSD)theory was applied to interpret AE precursors.The results reveal that as the LR increases,the rockburst stress of both rocks initially rises and then declines,with mica-schist exhibiting more severe damage and a higher dominance of tensile cracks.Notably,identifying rockburst precursors in mica-schist proved more challenging compared to slate.Among the methods tested,AE amplitude variance outperformed entropy in precursor identification.Additionally,the rockburst early warning time was found to be negatively correlated with the LR,with mica-schist consistently showing shorter warning times than slate.The CSD-derived precursor,due to its enhanced sensitivity,is recommended for early warning systems.These findings provide new insights into the role of LRs in rockburst dynamics and offer practical guidance for improving precursor identification and disaster mitigation strategies.
文摘1 Fascinated by the beauty of white Chinese porcelain(瓷),Marc Leuthold has spent two months creating contemporary artworks using the local clay and firing methods of Quyang,a county in Hebei Province,with over a thousand years of ceramic⁃making history.2 Leuthold,an elected lifetime member of the International Academy of Ceramics and a retired professor from the State University of New York,has been invited to around 20 Chinese cities to exhibit,lecture and exchange ideas.He also worked full⁃time at an art institute in Shanghai from 2018 to 2023.
基金supported by the National Natural Science Foundation of China(No.51832002 and 52072077),Instrumental Analysis Center of Guangdong Unversity of Technology,Sinomate Institute of Materials Research(Guang Zhou)Co.,Ltd(SIMR)for assisting the TEM characterization.
文摘The highly transparent novel high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic was successfully fabri-cated by the addition of 3 at.%ZrO_(2) and 10 at.%La_(2)O_(3) introduced as sintering additives via vacuum sin-tering.A single-phase solid solution cubic structure of the ceramic was obtained with a relative density of 99.95%and an average grain size of 6.91±3.28μm.The grain boundary of the(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic was clean with a thickness of only 1.3 nm.Further observations revealed uniform distribu-tion of all elements in the grains,and the presence of La and Zr segregation(1.5 nm thick)at few grain boundaries,but causing very little light scattering.The in-line transmittance of high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic reached 80%at 1100 nm,which was 98.7%of the theoretical value of Er_(2)O_(3) single crystal.Also,there were fluorescence emissions observed in the ultraviolet(311 nm),vis-ible(563,622 nm),and near-infrared(1032,1535 nm)regions.In addition,the intense red emission and weak green emission were detected,and the broad emission with a peak at 1.5μm was attributed to Stark splitting of Er3+ions,so the corresponding mechanism was discussed.Results obtained suggest that the highly transparent novel high-entropy(Lu_(0.2)Y_(0.2)Gd_(0.2)Yb_(0.2)Er_(0.2))_(2)O_(3) ceramic fabricated in this study could have broad application prospects in optical applications such as scintillators,up-conversion luminescent materials,and infrared lasers.
文摘Polyacrylonitrile (PAN) precursor is a core precursor for the preparation of high-performance carbon fibers. Its unique chemical structure and physical properties directly contributes to the microstructure and mechanical properties of carbon fibers, and therefore affect the overall performance of pultruded composites. This study systematically investigated the influence of PAN precursor properties on the degree of graphitization, surface morphology and mechanical properties of carbon fibers by regulating the molecular weight distribution, stretching ratio and impurity content of PAN precursor, and analyzed the mechanism of action of carbon fiber properties on the interfacial bonding strength and tensile/ bending properties of composites in combination with the pultrusion process. The results showed that when the filament stretchability was increased to 4.5 times, the axial orientation of carbon fibers increased by 18% and the tensile strength reached 520 MPa;Filaments with impurity content below 0.3% increase carbon fiber yield by 5.2% and interlaminar shear strength of composites by 23%. This study provides a theoretical basis for raw material screening and process optimization of high-performance carbon fibers and their composites.