It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle acc...It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.展开更多
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
Aim: This study was carried out in order to evaluate the potential of bacteriophages in controlling tomato bacterial wilt disease caused by Ralstonia solanacearum. Study design: A purposive sampling technique was used...Aim: This study was carried out in order to evaluate the potential of bacteriophages in controlling tomato bacterial wilt disease caused by Ralstonia solanacearum. Study design: A purposive sampling technique was used to collect samples from bacterial wilt hot spot tomato growing areas in Kenya. Place and duration of study: The research work was done at Jomo Kenyatta University of Agriculture and Technology, between June 2020 and July 2021. Methodology: Thirty diseased plants and corresponding soil were collected from five counties, Nyeri, Kajiado, Nyandarua, Kiambu and Taita Taveta. Bacteria were isolated and characterized, and then used as hosts to propagate the phages. Tests done were gram stain, oxidation test, potassium hydroxide solubility test, H2S production test catalase test, NaCl test and sugar fermentation test. Molecular analysis and phenotyping were also done in order to identify the bacteria. The bacteriophages were then isolated through a double overlay method using R. solanacearum as the host. They were characterized and assayed in a greenhouse setting to determine their effectiveness in controlling bacterial wilt. Results: Six host bacteria were isolated and all belonged to biovar II. Four phages were observed based on morphology. Upon characterization the phages were stable at 30˚C, PH range between 6 - 7 and tolerance of more than an hour under UV light. In the greenhouse experiment, treatment of plants with bacteriophage prevented wilting after subsequent inoculation with the pathogen. A bacteriophage mix of SN1 and WT1 were used for efficacy tests due to their efficiency in plating and infection. Phage SN1 and WT1 exhibited high lytic activity and relatively high thermotolerance and acid tolerance, thereby showing great potential in the biocontrol of bacterial wilt infection across a variety of conditions. Conclusion: The results obtained in this research show that bacteriophages offer potential for the biocontrol of bacterial wilt.展开更多
Pearl millet, Pennisetum glaucum (Leeke) R. Br, is the main cereal crop in Niger. This crop is seriously attacked by the millet Head miner (MHM), Heliocheilus albipunctella (de Joannis) (Lepidoptera, Noctuidae) causin...Pearl millet, Pennisetum glaucum (Leeke) R. Br, is the main cereal crop in Niger. This crop is seriously attacked by the millet Head miner (MHM), Heliocheilus albipunctella (de Joannis) (Lepidoptera, Noctuidae) causing significant yield losses. This study to optimize biological control of this pest was carried out in Niger in the laboratory and in a farming environment. In the laboratory, the larval paralysis and emergence of the parasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae) were compared between release jute bags, plastic boxes and cardboard boxes. In a farming environment, direct releases were carried out with plastic boxes and releases with jute bags in 12 villages of the Maradi region during the cropping seasons of 2021 and 2022. The results indicated that 25 larvae of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) in the boxes were all paralyzed by 2 females of H. hebetor within 7 hours 30 minutes. The emergence of adults began on the 7th day after the beginning of the experiment for a period of two weeks and three weeks respectively in the boxes and jute bags. The production varied from 107.08 to 110.17 parasitoids and was comparable between the Jute bags, plastic boxes and cardboard boxes. In Farmers’ fields, the parasitoid release with the two methods caused the parasitism rates that varied from 64.32 to 66.52% depending on the year but in 2022 the rate of parasitism was higher in the fields with direct releases using plastic boxes (72.66%) compared to those released with jute bags (56.35%). Plastic boxes and cardboard boxes can be used for the production of the H. hebetor parasitoids. These results can be recommended to the cottage industries in the Sahel in order to improve the production and release methods of H. hebetor and make them more adapted to farmers’ fields.展开更多
Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed To...Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.展开更多
Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategi...Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadr...This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.展开更多
Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital i...Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital initiated an emergency plan involving multi-departmental defense and control. It adopted a series of nosocomial infection prevention and control measures, including strengthening pre-examination and triage, optimizing the consultation process, improving the hospital’s architectural composition, implementing graded risk management, enhancing personal protection, and implementing staff training and supervision. Descriptive research was used to evaluate the short-term effects of these in-hospital prevention and control strategies. The analysis compared changes in related evaluation indicators between January 24, 2020 and February 12, 2020 (Chinese Lunar New Year’s Eve 2020 to lunar January 19) and the corresponding lunar period of the previous year. Results: Compared to the same period last year, the outpatient fever rate increased by 1.85-fold (P P Conclusion: The nosocomial infection prevention and control strategies implemented during this specific period improved the detection and control abilities for the COVID-19 source of infection and enhanced the compliance with measures. This likely contributed significantly to avoiding the occurrence of nosocomial infection.展开更多
Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the e...Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.展开更多
文摘It’s possible for malicious operators to seize hold of electrical control systems, for instance, the engine control unit of driverless vehicles, from various vectors, e.g. autonomic control system, remote vehicle access, or human drivers. To mitigate potential risks, this paper provides the inauguration study by proposing a theoretical framework in the physical, human and cyber triad. Its goal is to, at each time point, detect adversary control behaviors and protect control systems against malicious operations via integrating a variety of methods. This paper only proposes a theoretical framework which tries to indicate possible threats. With the support of the framework, the security system can lightly reduce the risk. The development and implementation of the system are out of scope.
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
文摘Aim: This study was carried out in order to evaluate the potential of bacteriophages in controlling tomato bacterial wilt disease caused by Ralstonia solanacearum. Study design: A purposive sampling technique was used to collect samples from bacterial wilt hot spot tomato growing areas in Kenya. Place and duration of study: The research work was done at Jomo Kenyatta University of Agriculture and Technology, between June 2020 and July 2021. Methodology: Thirty diseased plants and corresponding soil were collected from five counties, Nyeri, Kajiado, Nyandarua, Kiambu and Taita Taveta. Bacteria were isolated and characterized, and then used as hosts to propagate the phages. Tests done were gram stain, oxidation test, potassium hydroxide solubility test, H2S production test catalase test, NaCl test and sugar fermentation test. Molecular analysis and phenotyping were also done in order to identify the bacteria. The bacteriophages were then isolated through a double overlay method using R. solanacearum as the host. They were characterized and assayed in a greenhouse setting to determine their effectiveness in controlling bacterial wilt. Results: Six host bacteria were isolated and all belonged to biovar II. Four phages were observed based on morphology. Upon characterization the phages were stable at 30˚C, PH range between 6 - 7 and tolerance of more than an hour under UV light. In the greenhouse experiment, treatment of plants with bacteriophage prevented wilting after subsequent inoculation with the pathogen. A bacteriophage mix of SN1 and WT1 were used for efficacy tests due to their efficiency in plating and infection. Phage SN1 and WT1 exhibited high lytic activity and relatively high thermotolerance and acid tolerance, thereby showing great potential in the biocontrol of bacterial wilt infection across a variety of conditions. Conclusion: The results obtained in this research show that bacteriophages offer potential for the biocontrol of bacterial wilt.
文摘Pearl millet, Pennisetum glaucum (Leeke) R. Br, is the main cereal crop in Niger. This crop is seriously attacked by the millet Head miner (MHM), Heliocheilus albipunctella (de Joannis) (Lepidoptera, Noctuidae) causing significant yield losses. This study to optimize biological control of this pest was carried out in Niger in the laboratory and in a farming environment. In the laboratory, the larval paralysis and emergence of the parasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae) were compared between release jute bags, plastic boxes and cardboard boxes. In a farming environment, direct releases were carried out with plastic boxes and releases with jute bags in 12 villages of the Maradi region during the cropping seasons of 2021 and 2022. The results indicated that 25 larvae of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) in the boxes were all paralyzed by 2 females of H. hebetor within 7 hours 30 minutes. The emergence of adults began on the 7th day after the beginning of the experiment for a period of two weeks and three weeks respectively in the boxes and jute bags. The production varied from 107.08 to 110.17 parasitoids and was comparable between the Jute bags, plastic boxes and cardboard boxes. In Farmers’ fields, the parasitoid release with the two methods caused the parasitism rates that varied from 64.32 to 66.52% depending on the year but in 2022 the rate of parasitism was higher in the fields with direct releases using plastic boxes (72.66%) compared to those released with jute bags (56.35%). Plastic boxes and cardboard boxes can be used for the production of the H. hebetor parasitoids. These results can be recommended to the cottage industries in the Sahel in order to improve the production and release methods of H. hebetor and make them more adapted to farmers’ fields.
文摘Dose estimation and quality control in computed tomography (CT) scanners are useful in controlling the dose of radiation given to patients while tests are carried out. The study was performed in a 16-slice Computed Tomography (CT) system of LightSpeed RT16 Xtra CT scanner. Quality control was done using a vendor-provided QA Phantom, and the six aspects of image quality were measured. For CT dosimetry, Computed Tomography Dose index volume (CTDIvol) was performed using Computed Tomography Dose Index (CTDI) Phantom. CTDI Phantom consists of three parts: Pediatric Head, Adult Head, and Adult Body Phantom. A 10 cm long pencil ion chamber DCT-10 was used to measure the dose at different positions inside the CTDI Phantom. Data were collected using MagicMax Universal software. For dose estimation of the CTDIvol Report of AAPM Task Group, 96 and 111 formalisms were used. For Pediatric Head, Adult Head, and Adult Body Phantom the measured CIDIvol was 61.04 mGy, 48.11 mGy, and 18.08 mGy respectively. The study has shown deviations of 7%, 15%, and 19% between estimated and console-displayed doses for Pediatric Head, Adult Head, and Adult Body scan techniques respectively. The six aspects of image quality measured by QA Phantom were found to be compatible with the specifications of the machine and CTDIvol measured by CTDI Phantom were found within a tolerance limit of ±20%. Hence, the QC and dosimetry of the mentioned machine are within the limit.
文摘Malaria is a potentially lethal disease caused by parasites of the Plasmodium genus, transmitted to humans through the bite of infected female mosquitoes, primarily Anopheles. To control this disease, various strategies are implemented, including biological control, which targets the vectors of the parasite. This approach uses biological agents such as entomopathogenic fungi, including Metarhizium pingshaense, a fungus capable of causing lethal infections in mosquitoes. The production of Metarhizium pingshaense is still limited in Burkina Faso, and local cultivation of this fungus could help fill this gap. A study was conducted to identify optimal local substrates that promote its growth. Indeed, after gathering information on the dietary habits of populations in Bobo-Dioulasso and Bama, three potential substrates were selected: rice, cornmeal dough (MFL), and beans. These substrates were inoculated with two strains of Metarhizium pingshaense (S10 and S26) to assess their ability to support fungal growth and their effectiveness. Experimental results showed that MFL and bean substrates favored optimal growth of Metarhizium pingshaense, with growths of 1.91 cm and 2.13 cm after 8 days, compared to 1.83 cm on a standard media (PDA). In terms of virulence, S26 strain caused 60% mosquito mortality on both the bean and PDA media, while S10 strain induced mortalities of 50% for bean and 62% for PDA.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.
文摘This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.
文摘Objective: To evaluate the role of prevention and control strategies for nosocomial infection in a tertiary teaching hospital during the sudden outbreak of Corona Virus Disease 2019 (COVID-19). Methods: The hospital initiated an emergency plan involving multi-departmental defense and control. It adopted a series of nosocomial infection prevention and control measures, including strengthening pre-examination and triage, optimizing the consultation process, improving the hospital’s architectural composition, implementing graded risk management, enhancing personal protection, and implementing staff training and supervision. Descriptive research was used to evaluate the short-term effects of these in-hospital prevention and control strategies. The analysis compared changes in related evaluation indicators between January 24, 2020 and February 12, 2020 (Chinese Lunar New Year’s Eve 2020 to lunar January 19) and the corresponding lunar period of the previous year. Results: Compared to the same period last year, the outpatient fever rate increased by 1.85-fold (P P Conclusion: The nosocomial infection prevention and control strategies implemented during this specific period improved the detection and control abilities for the COVID-19 source of infection and enhanced the compliance with measures. This likely contributed significantly to avoiding the occurrence of nosocomial infection.
文摘Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.