针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依...针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依存项和长期依存项,从而提出一种基于时域卷积网络和长短期记忆网络的时间序列生成对抗网络(A Time-series Generative Adversarial Network based on Temporal convolutional network and Long-short term memory network, TL-TimeGAN)。采用覆盖性、有用性和相似度检验的综合分析方法作为合成数据质量的评价指标,进一步全面地评价合成数据的覆盖性、预测程度和相似性。最终,基于以太坊欺诈检测数据集,使用Tabnet网络对扩增数据进行异常检测并获得局部特征重要性以及全局特征重要性,以增强扩增数据应用于实际工作的实践指导价值。展开更多
It is shown that time asymmetry is essential for deriving thermodynamic law and arises from the turnover of energy while reducing its information content and driving entropy increase. A dynamically interpreted princip...It is shown that time asymmetry is essential for deriving thermodynamic law and arises from the turnover of energy while reducing its information content and driving entropy increase. A dynamically interpreted principle of least action enables time asymmetry and time flow as a generation of action and redefines useful energy as an information system which implements a form of acting information. This is demonstrated using a basic formula, originally applied for time symmetry/energy conservation considerations, relating time asymmetry (which is conventionally denied but here expressly allowed), to energy behaviour. The results derived then explained that a dynamic energy is driving time asymmetry. It is doing it by decreasing the information content of useful energy, thus generating action and entropy increase, explaining action-time as an information phenomenon. Thermodynamic laws follow directly. The formalism derived readily explains what energy is, why it is conserved (1st law of thermodynamics), why entropy increases (2nd law) and that maximum entropy production within the restraints of the system controls self-organized processes of non-linear irreversible thermodynamics. The general significance of the principle of least action arises from its role of controlling the action generating oriented time of nature. These results contrast with present understanding of time neutrality and clock-time, which are here considered a source of paradoxes, intellectual contradictions and dead-end roads in models explaining nature and the universe.展开更多
This paper aims to define the concept of time and justify its properties within the universal context, shedding new light on the nature of time. By employing the concept of the extrinsic universe, the paper explains t...This paper aims to define the concept of time and justify its properties within the universal context, shedding new light on the nature of time. By employing the concept of the extrinsic universe, the paper explains the observable universe as the three-dimensional surface of a four-dimensional 3-sphere (hypersphere), expanding at the speed of light. This expansion process gives rise to what we perceive as time and its associated aspects, providing a novel interpretation of time as a geometric property emerging from the dynamics of the universe’s expansion. The work offers insights into how this extrinsic perspective can address phenomena such as the universe’s accelerated expansion and dark matter, aligning the model with current observational data.展开更多
This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal ...This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.展开更多
文摘针对部分场景下标签较少、样本不均衡的时序数据,为了更好的捕捉序列之间的逐步依赖关系,本文一方面使用具有因果关系属性的时域卷积网络构建生成对抗网络,另一方面使用长短期记忆网络构建嵌入网络和复现网络,以实现模型同时处理短期依存项和长期依存项,从而提出一种基于时域卷积网络和长短期记忆网络的时间序列生成对抗网络(A Time-series Generative Adversarial Network based on Temporal convolutional network and Long-short term memory network, TL-TimeGAN)。采用覆盖性、有用性和相似度检验的综合分析方法作为合成数据质量的评价指标,进一步全面地评价合成数据的覆盖性、预测程度和相似性。最终,基于以太坊欺诈检测数据集,使用Tabnet网络对扩增数据进行异常检测并获得局部特征重要性以及全局特征重要性,以增强扩增数据应用于实际工作的实践指导价值。
文摘It is shown that time asymmetry is essential for deriving thermodynamic law and arises from the turnover of energy while reducing its information content and driving entropy increase. A dynamically interpreted principle of least action enables time asymmetry and time flow as a generation of action and redefines useful energy as an information system which implements a form of acting information. This is demonstrated using a basic formula, originally applied for time symmetry/energy conservation considerations, relating time asymmetry (which is conventionally denied but here expressly allowed), to energy behaviour. The results derived then explained that a dynamic energy is driving time asymmetry. It is doing it by decreasing the information content of useful energy, thus generating action and entropy increase, explaining action-time as an information phenomenon. Thermodynamic laws follow directly. The formalism derived readily explains what energy is, why it is conserved (1st law of thermodynamics), why entropy increases (2nd law) and that maximum entropy production within the restraints of the system controls self-organized processes of non-linear irreversible thermodynamics. The general significance of the principle of least action arises from its role of controlling the action generating oriented time of nature. These results contrast with present understanding of time neutrality and clock-time, which are here considered a source of paradoxes, intellectual contradictions and dead-end roads in models explaining nature and the universe.
文摘This paper aims to define the concept of time and justify its properties within the universal context, shedding new light on the nature of time. By employing the concept of the extrinsic universe, the paper explains the observable universe as the three-dimensional surface of a four-dimensional 3-sphere (hypersphere), expanding at the speed of light. This expansion process gives rise to what we perceive as time and its associated aspects, providing a novel interpretation of time as a geometric property emerging from the dynamics of the universe’s expansion. The work offers insights into how this extrinsic perspective can address phenomena such as the universe’s accelerated expansion and dark matter, aligning the model with current observational data.
文摘This paper presents an optimized strategy for multiple integrations of photovoltaic distributed generation (PV-DG) within radial distribution power systems. The proposed methodology focuses on identifying the optimal allocation and sizing of multiple PV-DG units to minimize power losses using a probabilistic PV model and time-series power flow analysis. Addressing the uncertainties in PV output due to weather variability and diurnal cycles is critical. A probabilistic assessment offers a more robust analysis of DG integration’s impact on the grid, potentially leading to more reliable system planning. The presented approach employs a genetic algorithm (GA) and a determined PV output profile and probabilistic PV generation profile based on experimental measurements for one year of solar radiation in Cairo, Egypt. The proposed algorithms are validated using a co-simulation framework that integrates MATLAB and OpenDSS, enabling analysis on a 33-bus test system. This framework can act as a guideline for creating other co-simulation algorithms to enhance computing platforms for contemporary modern distribution systems within smart grids concept. The paper presents comparisons with previous research studies and various interesting findings such as the considered hours for developing the probabilistic model presents different results.