This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the contro...This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.展开更多
Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realize...Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realized in a standard 0 25μm CMOS process.The ISRVCO is characterized by the following performances: -100dBc /Hz@1MHz at free running frequency,-91 7dBc/Hz@10kHz when injection is locked.With the 3 3V of power supply,the tuning range is 150MHz and the locking range is 100MHz with 50m V p p signal injection.展开更多
Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque corti- cal network. In the absence of information transmission delay the bursting activity is desynchronized, givi...Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque corti- cal network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchro- nization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transi- tions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.展开更多
A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strate...A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10647001)the Guangxi Natural Science Foundation (Grant No 0728042)+1 种基金the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No RC2007006)the NSFC-HK Joint Research Scheme (Grant No N-CityU107/07)
文摘This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
文摘Oscillator IC technique is developed by combining injecting synchronization technique with a ring VCO.Using the technique,a novel 2 488GHz of monolithical integrated injected synchronized ring VCO (ISRVCO) is realized in a standard 0 25μm CMOS process.The ISRVCO is characterized by the following performances: -100dBc /Hz@1MHz at free running frequency,-91 7dBc/Hz@10kHz when injection is locked.With the 3 3V of power supply,the tuning range is 150MHz and the locking range is 100MHz with 50m V p p signal injection.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10972001,10702023 and 10832006)Matjaz Perc individually acknowledges support from the Slovenian Research Agency (Grant No. Z1-2032)
文摘Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque corti- cal network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchro- nization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transi- tions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.
基金supported by National Natural Science Foundation of China (No. 69774011)
文摘A control area network (CAN) based multi-motor synchronized motion control system with an advanced synchronized control strategy is proposed. The strategy is to incorporate the adjacent cross-coupling control strategy into the sliding mode control architecture. As illustrated by the four-induction-motor-based experimental results, the multi-motor synchronized motion control system, via the CAN bus, has been successfully implemented. With the employment of the advanced synchronized motion control strategy, the synchronization performance can be significantly improved.