期刊文献+
共找到5,195篇文章
< 1 2 250 >
每页显示 20 50 100
混合近邻和多簇合并的密度峰值聚类算法 被引量:1
1
作者 吕莉 赵妞 +2 位作者 肖人彬 王新峰 韩龙哲 《控制与决策》 北大核心 2025年第7期2194-2202,共9页
密度峰值聚类算法简单、高效,可识别任意维度和形状类簇,已在各领域得到广泛应用.然而,密度峰值聚类算法也存在一些问题,如:对截断距离参数敏感、难以发现低密度区域的类簇中心以及容易产生“多米诺效应”.为此,提出混合近邻和多簇合并... 密度峰值聚类算法简单、高效,可识别任意维度和形状类簇,已在各领域得到广泛应用.然而,密度峰值聚类算法也存在一些问题,如:对截断距离参数敏感、难以发现低密度区域的类簇中心以及容易产生“多米诺效应”.为此,提出混合近邻和多簇合并的密度峰值聚类算法.首先,综合考虑样本的全局分布与局部结构,引入自然近邻与k近邻重新定义局部密度,消除对截断距离参数的敏感,并提高低密度区域样本的局部密度以增加类簇中心的识别度;其次,将样本划分为多个微簇,并利用簇间关联度进行合并,减少距离类簇中心较远的样本的分配错误,从而有效缓解分配错误连带效应.使用人工数据与真实数据进行测试,结果表明,所提出算法的综合性能优于对比算法. 展开更多
关键词 聚类 自然近邻 K近邻 簇间关联度 密度峰值 局部密度
原文传递
基于K互近邻与核密度估计的DPC算法 被引量:2
2
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究 被引量:1
3
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
DTWAWKNN驱动的蓝牙/WiFi指纹定位方法 被引量:1
4
作者 杨明 纪冬华 《导航定位学报》 北大核心 2025年第3期189-197,共9页
针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似... 针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似度,并基于加权K近邻(WKNN)实现匹配定位,然后以蓝牙、WiFi及蓝牙/WiFi混合指纹库与蓝牙、WiFi及蓝牙/WiFi混合指纹的匹配结果为定位特征,构建基于多类型指纹匹配定位结果的离线定位指纹库;在线阶段,基于DTWAWKNN实现蓝牙、WiFi和蓝牙/WiFi混合指纹之间的匹配定位,获取基于多类型指纹匹配定位结果的在线定位指纹,再基于WKNN算法实现离线定位指纹库和在线定位指纹的匹配定位。实验结果表明,提出方法的定位效果远优于WKNN、随机森林(RF)和支持向量机(SVM),定位精度可至少提高67.74%,定位稳定性最少提高54.51%,算法复杂度至少降低77.9%。 展开更多
关键词 蓝牙 无线保真(WiFi) 指纹定位 动态时间规整(DTW) 加权K近邻(WKNN)
在线阅读 下载PDF
基于点云配准与最近邻搜索的钢轨磨耗测量方法 被引量:1
5
作者 曾杉 王文斌 +3 位作者 尹太军 彭建川 刘艳彩 张杰 《燕山大学学报》 北大核心 2025年第1期55-65,共11页
提出了基于点云配准和最邻近搜索的方法,以解决钢轨轨腰处钢印噪声导致的轨顶磨耗测量点识别误差较大的问题,并成功实现了钢轨垂直和侧面磨耗点的自动定位。首先,通过坐标系旋转和点云滤波等预处理技术,以钢轨轮廓作为数据单元,获取有... 提出了基于点云配准和最邻近搜索的方法,以解决钢轨轨腰处钢印噪声导致的轨顶磨耗测量点识别误差较大的问题,并成功实现了钢轨垂直和侧面磨耗点的自动定位。首先,通过坐标系旋转和点云滤波等预处理技术,以钢轨轮廓作为数据单元,获取有效的钢轨配准数据。接着,采用非线性拟合方法拟合轨腰圆弧的圆心,以此作为基准点进行任意状态下的点云初步粗配准。对于在轨腰处出现钢印编号的实际测量情况,采用了轨顶与轨腰点云的ICP加权精配准方案,实现测量轮廓与标准轮廓的精确重合。最后,根据钢轨磨耗计量办法,以标准钢轨轮廓指定位置坐标线为基准线,在配准后的点云数据中,通过最邻近搜索的方法寻找距离基准线最近的坐标,从而精确定位磨耗测量点的位置。实验结果表明,该方法能高效且精确地提取钢轨磨耗测量点。文章最后以三维图的方式展示磨耗测量点与标准轮廓的对比,其特征点提取的标准偏差小于0.1 mm,最大偏差小于0.3 mm。 展开更多
关键词 钢轨磨耗 点云预处理 加权点云配准 最近邻搜索
在线阅读 下载PDF
基于K近邻算法的高粘结性能混凝土抗压强度预测 被引量:1
6
作者 伍晓圆 刘艳 《粘接》 2025年第3期24-27,共4页
针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙... 针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙度,计算新配比样本与参考配比样本配比特征的欧几里得距离,将距离最小的参考配比样本中混凝土抗压强度作为新配比样本中混凝土抗压强度预测值,提高抗压强度的预测精度。试验结果表明,硅灰掺量、钢纤维掺量、粉煤灰掺量分别是25%、4%、10%时,高粘结性能混凝土抗压强度较优。 展开更多
关键词 K近邻算法 高粘结性能 抗压强度 超高性能混凝土 配合比
在线阅读 下载PDF
基于激光点云的架空输电线路导线弧垂测量系统
7
作者 李鹏 井小川 +2 位作者 宁昊 孟庆伟 朱明晓 《实验技术与管理》 北大核心 2025年第6期55-61,共7页
电力导线弧垂是影响输电线路运行状态的重要参数,对弧垂的有效监控是输电网络健康运行的重要保障。针对输电线路中的电力导线弧垂测量实验,设计了一套基于无人机激光点云的导线弧垂测量系统,提出了基于三维点云的输电导线寻踪和缺失点... 电力导线弧垂是影响输电线路运行状态的重要参数,对弧垂的有效监控是输电网络健康运行的重要保障。针对输电线路中的电力导线弧垂测量实验,设计了一套基于无人机激光点云的导线弧垂测量系统,提出了基于三维点云的输电导线寻踪和缺失点云补全方法,并为系统开发了前端用户交互界面。通过开展对汉郑线JL3/G1A-630/45架空输电线路的测量实验,验证了该测量系统能够有效准确地测量电力导线的弧垂,并且具备较好的鲁棒性和高效性。 展开更多
关键词 弧垂 激光点云 近邻搜索 点云补全
在线阅读 下载PDF
一种融合贝叶斯优化的K最近邻分类算法 被引量:2
8
作者 高海宾 《绵阳师范学院学报》 2025年第5期79-87,共9页
K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了... K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了KNN算法的基本原理,并分析了超参数对算法性能的影响.随后,探讨了贝叶斯优化的基础理论及其在超参数优化中的应用.实验过程中,通过对Wine数据集的分类验证了算法的有效性和可靠性,再通过一系列实验,对比了贝叶斯优化、网格搜索和随机搜索等方法在不同规模数据集上的性能,结果显示,贝叶斯优化在大规模数据集上展现出显著的时间效率优势,能够快速收敛至最优或近似最优的超参数配置.最后讨论了该算法的局限性,并提出了未来可能的研究方向. 展开更多
关键词 K最近邻算法 贝叶斯优化 超参数 分类性能
在线阅读 下载PDF
使用最近邻域聚合图神经网络的阿尔茨海默病分类方法
9
作者 韩亮 刘媛 +2 位作者 蒲秀娟 谈云帆 任青 《电子学报》 北大核心 2025年第3期1000-1013,共14页
阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood... 阿尔茨海默病(Alzheimer’s Disease,AD)是一种慢性神经系统退行性疾病,其准确分类有助于实现AD的早期诊断,从而及时采取针对性的治疗和干预措施.本文提出了一种最近邻域聚合图神经网络(Graph neural network with nearest Neighborhood AgGrEgation,GraphNAGE)的AD分类新方法.首先进行图数据建模,将AD数据样本表示为图数据.采用基于互信息(Mutual Information,MI)的特征选择方法,从样本的114维大脑皮层与皮层下感兴趣区域(Cerebral Cortex and Subcortical Regions Of Interest,CCS-ROI)的体积特征中选取重要性高的体积特征,并将其用于节点建模.提出基于相似性度量的关系建模方法,利用重要性高的体积特征、遗传基因、人口统计信息和认知评分对样本之间的关系进行建模.进而构建GraphNAGE,针对每个节点,基于与该节点相关的边的权重进行最近邻域采样,然后使用均值聚合方法对采样得到的邻居节点和中心节点的数据进行聚合,最后通过一个全连接层和一个Softmax层实现AD分类.在TADPOLE(The Alzheimer’s Disease Prediction Of Longitudinal Evolution)数据集上进行实验,结果表明:本文提出的AD分类方法的准确率(ACCuracy,ACC)为98.20%,F_(1)分数为97.34%,曲线下面积(Area Under Curve,AUC)为97.80%.实验结果表明:本文提出的AD分类方法充分利用了AD数据样本之间的相关性,其性能优于传统的基于机器学习、深度学习和图神经网络(Graph Neural Network,GNN)的AD分类方法. 展开更多
关键词 阿尔茨海默病(AD) 图神经网络(GNN) 节点建模 关系建模 相似性度量 最近邻域聚合
在线阅读 下载PDF
基于锚点匹配和距离修正的轨迹相似性度量方法
10
作者 桂志鹏 窦晨 +2 位作者 彭德华 刘宇航 吴华意 《地理与地理信息科学》 北大核心 2025年第1期1-14,共14页
轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性... 轨迹相似性度量对群体移动模式分析与个性化位置服务推荐具有重要意义,现有方法未综合考虑轨迹点序列顺序与点对空间邻近性,导致对局部相似轨迹、逆序轨迹间的关系度量不准确。该文提出一种顾及轨迹全局空间分布和序列顺序的轨迹相似性度量方法,基于K近邻算法识别两条轨迹中空间相似度高的点对作为锚点,以划分区间约束其他点对匹配,并对受序列顺序约束无法匹配至空间邻近点的轨迹点进行距离修正,优化轨迹相似性计算。在深圳市515条人工标注轨迹数据上的验证结果表明,与改进的编辑距离、模糊最长公共子串和时空格网模型等8种方法相比,该方法在轨迹聚类任务中准确性提升2.8%~41.9%,并对轨迹长度、噪声和采样率变化具有较高的鲁棒性;此外,通过消融实验、特殊场景分析等证明了方法各步骤的有效性,并探讨了算法参数对精度的影响。研究结果可为轨迹聚类、轨迹检索等下游任务提供支撑。 展开更多
关键词 轨迹相似性 轨迹匹配 时间序列 空间邻近性 K近邻 距离衰减
在线阅读 下载PDF
混合多策略北方苍鹰优化算法及特征选择
11
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
应用小样本学习模型的淡水水质参数反演方法
12
作者 孙盛 郑成钊 +1 位作者 周巨锁 余旭 《遥感信息》 北大核心 2025年第4期19-25,共7页
在水质反演任务中,传统方法主要依赖物理模型来推导水质参数与遥感数据之间的关系,在气象条件、水文地理条件发生变化时,模型的预测性能不佳。为了提升反演方法的性能,提出将小样本学习方法应用于水质参数的预测,设计了一个局部描述符... 在水质反演任务中,传统方法主要依赖物理模型来推导水质参数与遥感数据之间的关系,在气象条件、水文地理条件发生变化时,模型的预测性能不佳。为了提升反演方法的性能,提出将小样本学习方法应用于水质参数的预测,设计了一个局部描述符权重注意力模块,将其集成到经典的小样本学习网络DN4中。该模块能够更有效地提取水质特征的局部描述符,从而提升模型在训练集数据量有限条件下的泛化能力和反演精度。收集了新丰江水库、良德水库等8个水库的水质数据,与哨兵二号卫星(Sentinel-2A、Sentinel-2B)遥感图像数据源进行匹配,共成功匹配210景图像,并构建了水质数据训练集和测试集。开展了定量实验,结果表明,新的反演方法在多个水质反演应用中均表现出较好的性能,验证了所提出模块在水质反演领域的有效性。 展开更多
关键词 小样本学习 注意力模块 水质反演 深度最近邻网络 局部描述符
在线阅读 下载PDF
基于快速特征逼近谱图注意力网络的滚动轴承半监督智能故障诊断研究
13
作者 宁少慧 杜越 周利东 《机床与液压》 北大核心 2025年第6期33-39,共7页
基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据... 基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据,丰富了数据特征;将图数据输入到构建的诊断模型中,学习故障信息特征,并分析不同的标签比例训练集的诊断结果。同时,分析了Sum、Mean、Max 3种池化方式和超参数对诊断模型的影响;最后,分别在两组实验轴承数据集上进行验证。结果表明:所提模型可以有效地捕获图的全局模式,降低计算复杂度,在全监督诊断任务中其诊断准确率可以保持在99%以上;在标签比例为10%的半监督任务中,其诊断准确率仍能保持在93.5%,所提诊断模型在半监督任务中有良好表现。 展开更多
关键词 轴承 故障诊断 快速特征逼近谱图注意力网络 K近邻图算法
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
14
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
15
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
KNN-Transformer:基于K近邻分类的Transformer算法在滚动轴承故障诊断中的应用
16
作者 王军锋 张彪 +5 位作者 张昊 田开庆 田新民 王泰旭 罗凌燕 赵悦 《机电工程技术》 2025年第18期160-166,共7页
针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解... 针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解决小样本数据集场景下Softmax线性分类器易过拟合的问题。实验基于滚动轴承四自由度动力学仿真数据及西储大学(CWRU)轴承故障数据集展开。在仿真数据中,模型训练集与测试集准确率分别达100%和97%,AUC值为0.98,表明其对复杂振动信号的特征解析能力;在西储大学数据集中,测试集准确率达100%,AUC值为1,获得了较好的故障识别效果。通过对比实验显示,KNN-Transformer在精准率、召回率等指标上均优于单一KNN或Transformer模型,验证了其在机械故障诊断中的有效性与鲁棒性,为智能诊断提供了新方法。 展开更多
关键词 滚动轴承故障诊断 KNN-Transformer 自注意力机制 K近邻算法 小样本数据
在线阅读 下载PDF
基于空间变换网络和特征分布校准的小样本皮肤图像分类模型
17
作者 王静 刘嘉星 +2 位作者 宋婉莹 薛嘉兴 丁温欣 《计算机应用》 北大核心 2025年第8期2720-2726,共7页
基于深度学习的图像分类模型通常需要大量标记数据,然而,在医学领域的皮肤病变分类任务中,收集大量图像数据面临着诸多挑战。为了能准确分类小样本皮肤疾病,提出一种基于空间变换网络(STN)和特征分布校准的小样本分类模型。首先,将迁移... 基于深度学习的图像分类模型通常需要大量标记数据,然而,在医学领域的皮肤病变分类任务中,收集大量图像数据面临着诸多挑战。为了能准确分类小样本皮肤疾病,提出一种基于空间变换网络(STN)和特征分布校准的小样本分类模型。首先,将迁移学习和元学习相结合,以解决跨域迁移小样本存在的过拟合问题;其次,在预训练分类任务前插入旋转角度预测任务,以便模型更好地适应医学图像数据的高复杂度;再次,在对图像下采样后引入STN,以通过显式地对输入图像进行仿射变换,增强特征的提取和识别能力;最后,通过特征分布校准对新类特征进行约束,并引入最邻近质心算法进行分类决策,在简化算法流程的同时显著提升分类精度。在ISIC2018皮肤病变数据集上的实验结果表明,与当前主流小样本模型Meta-Baseline相比,在2-way和3-way分类任务中,所提模型的平均精度分别提高了11.80和10.82个百分点;与模型MetaMed相比,在2-way 3-shot和3-way 3-shot分类任务中,所提模型的分类精度分别提升了6.65和9.58个百分点。可见,所提模型有效提高了小样本皮肤疾病的分类精度,能够更好地辅助医生提高临床诊断精确度。 展开更多
关键词 小样本学习 图像分类 皮肤病变 空间变换网络 最邻近质心
在线阅读 下载PDF
基于最大安全近邻与局部密度的自适应过采样方法
18
作者 赵小强 何嘉琦 《电子与信息学报》 北大核心 2025年第4期1140-1149,共10页
针对不平衡数据过采样的过程中如何合成有效新样本的问题,该文提出一种基于最大安全近邻与局部密度的自适应过采样方法。该方法利用最大安全近邻和局部密度将少数类样本划分为安全样本、边界样本和离群点;在此基础上,通过组合加权设置... 针对不平衡数据过采样的过程中如何合成有效新样本的问题,该文提出一种基于最大安全近邻与局部密度的自适应过采样方法。该方法利用最大安全近邻和局部密度将少数类样本划分为安全样本、边界样本和离群点;在此基础上,通过组合加权设置样本的采样概率,使得靠近边界的“次边界样本”更容易被选择为根样本,并且自适应地调整K近邻的参数K,选择最优合成区域;针对离群点,采用超球面内的随机过采样策略,进一步增加少数类样本的多样性。最后,将所提方法与合成少数类过采样技术(SMOTE)、自适应合成采样方法(ADASYN)等6种过采样方法在13个公开数据集上进行实验分析,结果表明,所提方法相对于对比方法在F1分数(F1-score)指标上分别平均提高了6.9%,8.8%,8.2%,5.8%,7.2%和12.5%,在几何平均值(G-mean)指标上分别平均提高了3.0%,2.5%,3.0%,3.2%,5.3%和8.6%,证明所提方法可以有效解决不平衡数据分类问题。 展开更多
关键词 不平衡数据 过采样技术 最大安全近邻 次边界样本
在线阅读 下载PDF
基于RSA模型和改进K-means算法的电商行业客户细分
19
作者 杨静 《计算机应用与软件》 北大核心 2025年第8期125-131,172,共8页
针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻... 针对新兴的网络购物客户数量大、客户流动性强和消费数据多的特点,提出RSA模型结合改进的K-means聚类算法实现客户细分。采用熵值法计算RSA模型各指标的权重,综合各个属性计算客户价值。结合K近邻算法和密度峰值算法,提出一种基于K近邻和密度峰值聚类的K-means初始聚类中心选取方法,优化传统K-means算法实现客户细分。通过选取的标准数据集和某零售公司在线交易的真实数据进行实验验证,证明了RSA模型和改进K-means算法具有更加优异的性能。 展开更多
关键词 RSA模型 客户细分 K-MEANS算法 密度峰值聚类 K近邻
在线阅读 下载PDF
基于图结构增强的番茄叶部病害识别方法
20
作者 刘博 王斌成 +2 位作者 陶旭 郭娜炜 马寅驰 《中国农机化学报》 北大核心 2025年第5期125-132,共8页
番茄作为重要的蔬菜作物,其产量和质量常受到各类叶部病害的影响。针对此问题,计算机视觉技术已被广泛应用于病害的自动识别中。现有方法主要分为基于手工特征提取与深度学习两大类。基于手工特征的方法虽然简洁高效,但在鲁棒性方面存... 番茄作为重要的蔬菜作物,其产量和质量常受到各类叶部病害的影响。针对此问题,计算机视觉技术已被广泛应用于病害的自动识别中。现有方法主要分为基于手工特征提取与深度学习两大类。基于手工特征的方法虽然简洁高效,但在鲁棒性方面存在限制;而基于深度学习的方法,尽管能有效提升识别准确性,但往往需要较大的数据标注量与较高的计算复杂性。为解决这些问题,提出一种基于图结构增强的番茄叶部病害识别框架(TDR—EGS)。TDR—EGS通过整合样本间的拓扑关系,实现图学习与单样本学习的交替训练,从而在不增加模型推理阶段复杂度的前提下有效提升分类性能。首先通过卷积神经网络提取单样本特征,然后利用这些特征构建k近邻图以挖掘样本间的结构信息。这种方法使得图学习和单样本学习能够在共享的网络结构和外部存储机制的支持下协同工作。在11种番茄病害上的试验结果表明,TDR—EGS能在不增加推理复杂度的前提下有效提升多种主流基准模型的性能,最高达到98.61%的识别精度。此外,即使在仅使用60%标签信息的条件下,TDR—EGS的性能仍可以接近或超过完全监督学习的基准模型,充分证明该框架的有效性和泛化能力,为农业病害识别应用提供一种高效且通用的解决方案。 展开更多
关键词 番茄叶部 病害识别 图学习 k近邻图 交替训练 深度学习
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部