期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
Fluid-structure interaction simulation for multi-body flexible morphing structures 被引量:1
1
作者 Wenzhi GUO Yongtao SHUI +1 位作者 Lu NIE Gang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期137-147,共11页
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex... The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration. 展开更多
关键词 Fluid-structure interaction multi-body dynamics modeling Flexible structures AERODYNAMICS Morphing wings
原文传递
A review of airbag landing system for spacecraft
2
作者 Xinyi SHEN Xuefeng WANG Caishan LIU 《Chinese Journal of Aeronautics》 2025年第8期243-258,共16页
To ensure the safety of astronauts and equipment during landing,the airbag landing system is commonly utilized to attenuate the impact response of the spacecraft.However,the complex impact dynamics and multi-disciplin... To ensure the safety of astronauts and equipment during landing,the airbag landing system is commonly utilized to attenuate the impact response of the spacecraft.However,the complex impact dynamics and multi-disciplinary coupling pose significant challenges to mission design.This paper first investigates the typical design scheme of the airbag landing system for manned spacecrafts to obtain basic insight.A comprehensive review of the past research works on the airbag landing system is then carried out from three aspects:dynamic modeling,performance optimization,and experimental study.The airbag landing system for spacecraft is a rigid-flexible-gas coupling system,which can be modeled through multi-body dynamics or finite element method.Different venting structures and optimization methods are introduced to improve the cushioning performance.Experimental setups for drop test and airbag test are developed to verify the design feasibility.Finally,this paper proposes key issues in the dynamics analysis and design optimization of the airbag landing system for future study. 展开更多
关键词 AIRBAG Finite element method Impact testing multi-body system SPACECRAFT
原文传递
Multi-body Motion Modeling and Simulation for Tilt Rotor Aircraft 被引量:8
3
作者 李海旭 屈香菊 王维军 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期415-422,共8页
The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimpl... The previous study on modeling of the tilt rotor aircraft used to put a premium on the complicated aerodynamic computation, and the research on the motion equations is often constrained to frequently use the oversimplified 6-degree of freedom (DOF) rigid body equations. However, the transfiguration of aircraft during transition stage, is complicated due to the aerodynamic interference and the change of center of gravity (CG). Moreover, the gyroscopic moment caused by tilting the high-speed revolving rotors seriously interferes with the aircraft attitude. The above-cited 6-DOF single rigid body equations do not take the inertia coupling effects into account during transition. For this sake, the article, reckoning the body, the nacelles and the rotors to be independent entities, establishes a realistic model in the form of multi-body motion equations. First, by applying Newton's laws and angular momentum theorem to a mass of elements of the aircraft, the multi-body motion equations in inertial flame as well as in body frame are obtained by integrating over all elements. As the equations are of implicit nonlinear differential type, the consistent initial value problem should be solved. Then, a numerical simulation of the differential equations is conducted by means of the Runge-Kutta-Felhberg integral algorithm. The modeling and the simulation algorithm are verified against the data of XV-15 as an example. The model can be used in the area of flight dynamics, flight control and flight safety of tilt rotor air- craft. 展开更多
关键词 tilt rotor aircraft multi-body dynamics motion modeling flight dynamics SIMULATION
原文传递
Dynamic Modeling and Simulation of Multi-body Systems Using the Udwadia-Kalaba Theory 被引量:25
4
作者 ZHAO Han ZHEN Shengchao CHEN Ye-Hwa 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期839-850,共12页
Laboratory experiments were conducted for falling U-chain,but explicit analytic form of the general equations of motion was not presented.Several modeling methods were developed for fish robots,however they just focus... Laboratory experiments were conducted for falling U-chain,but explicit analytic form of the general equations of motion was not presented.Several modeling methods were developed for fish robots,however they just focused on the whole fish’s locomotion which does little favor to understand the detailed swimming behavior of fish.Udwadia-Kalaba theory is used to model these two multi-body systems and obtain explicit analytic equations of motion.For falling U-chain,the mass matrix is non-singular.Second-order constraints are used to get the constraint force and equations of motion and the numerical simulation is conducted.Simulation results show that the chain tip falls faster than the freely falling body.For fish robot,two-joint Carangiform fish robot is focused on.Quasi-steady wing theory is used to approximately calculate fluid lift force acting on the caudal fin.Based on the obtained explicit analytic equations of motion(the mass matrix is singular),propulsive characteristics of each part of the fish robot are obtained.Through these two cases of U chain and fish robot,how to use Udwadia-Kalaba equation to obtain the dynamical model is shown and the modeling methodology for multi-body systems is presented.It is also shown that Udwadia-Kalaba theory is applicable to systems whether or not their mass matrices are singular.In the whole process of applying Udwadia-Kalaba equation,Lagrangian multipliers and quasi-coordinates are not used.Udwadia-Kalaba theory is creatively applied to dynamical modeling of falling U-chain and fish robot problems and explicit analytic equations of motion are obtained. 展开更多
关键词 Udwadia-Kalaba equation multi-body systems falling U-chain fish robot
在线阅读 下载PDF
New Method for Predicting the Motion Responses of A Flexible Joint Multi-Body Floating System to Irregular Waves 被引量:14
5
作者 陈徐均 崔维成 +1 位作者 沈庆 孙芦忠 《China Ocean Engineering》 SCIE EI 2001年第4期491-498,共8页
A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that... A new hybrid method of frequency domain and time domain is developed in this paper to predict the motion responses of a flexibly joint multi-body floating system to irregular waves. The main idea of the method is that the three-dimensional frequency method is used to obtain the hydrodynamic coefficients and the response equations are solved in time domain step by step. All the forces can be obtained at the same time. The motions and nonlinear mooring forces of a box type six-body floating system are predicted. A comparison of the theoretical method-based Solutions with experimental results has shown good agreement. 展开更多
关键词 flexible joint multi-body floating system nonlinear mooring forces
在线阅读 下载PDF
Conceptual design and flight test of two wingtipdocked multi-body aircraft 被引量:9
6
作者 Yang MENG Chao AN +1 位作者 Changchuan XIE Chao YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期144-155,共12页
To overcome the drawbacks such as large wing deformations,poor performance encountering gusts,limits in taking off and landing,inconvenience of transportation of High-Altitude Long-Endurance(HALE)Unmanned Aerial Vehic... To overcome the drawbacks such as large wing deformations,poor performance encountering gusts,limits in taking off and landing,inconvenience of transportation of High-Altitude Long-Endurance(HALE)Unmanned Aerial Vehicles(UAVs),a new conceptual aircraft called wingtip-docked Multi-Body Aircraft(MBA)has attracted lots of attentions.Aiming to investigate the feasibility of this concept,two UAV models were designed,manufactured and connected by a wingtip-docking mechanism,which only allows the relative roll motion between the two aircraft.The trim solution of the two connected aircraft is firstly obtained by solving the developed nonlinear flight dynamic equations,followed by the stability analysis based on the linearized model.The results show that the connected aircraft is inherently unstable and cannot fly without a reasonable flight control system.A set of Proportional-Integral-Derivative(PID)control laws was then developed and implemented in the two experimental aircraft.The success of the flight tests show that the flight control can effectively eliminate the unstable motion and the wingtip-docked MBA is controllable and feasible。 展开更多
关键词 Flight test multi-body aircraft New conceptual aircraft PID control Wingtip-docking mechanism
原文传递
Multi-body dynamic system simulation of carrier-based aircraft ski-jump takeoff 被引量:6
7
作者 Wang Yangang Wang Weijun Qu Xiangju 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第1期104-111,共8页
The flight safety is threatened by the special flight conditions and the low speed of carrier-based aircraft ski-jump takeoff. The aircraft carrier motion, aircraft dynamics, landing gears and wind field of sea state ... The flight safety is threatened by the special flight conditions and the low speed of carrier-based aircraft ski-jump takeoff. The aircraft carrier motion, aircraft dynamics, landing gears and wind field of sea state are comprehensively considered to dispose this multidiscipline intersection problem. According to the particular naval operating environment of the carrier-based aircraft ski-jump takeoff, the integrated dynamic simulation models of multi-body system are developed, which involves the movement entities of the carrier, the aircraft and the landing gears, and involves takeoff instruction, control system and the deck wind disturbance. Based on Matlab/Simulink environment, the multi-body system simulation is realized. The validity of the model and the rationality of the result are verified by an example simulation of carrier-based aircraft ski-jump takeoff. The simulation model and the software are suitable for the study of the multidiscipline intersection problems which are involved in the performance, flight quality and safety of carrier-based aircraft takeoff, the effects of landing gear loads, parameters of carrier deck, etc. 展开更多
关键词 Aircraft carrier Carrier-based aircraft MODELS multi-body dynamics SIMULATION Ski-jump takeoff
原文传递
Analysis for the Deployment of Single-Point Mooring Buoy System Based on Multi-Body Dynamics Method 被引量:5
8
作者 常宗瑜 唐原广 +2 位作者 李华军 杨建明 王磊 《China Ocean Engineering》 SCIE EI 2012年第3期495-506,共12页
Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components... Deployment of buoy systems is one of the most important procedures for the operation of buoy system. In the present study, a single-point mooring buoy system which contains surface buoy, cable segments with components, anchor and so on is modeled by applying multi-body dynamics method. The motion equations are developed in discrete node description and fully Cartesian coordinates. Then numerical method is used to solve the ordinary differential equations and dynamics simulations are achieved while anchor is casting from board. The trajectories and velocities of different nodes without current and with current in buoy system are obtained. The transient tension force of each part of the cable is analyzed in the process of deployment. Numerical results indicate that the transient payload increases to a peak value when the anchor is touching the seabed and the maximum tension force will vary with different floating configuration. This work is helpful for design and deployment planning of buoy system. 展开更多
关键词 multi-body dynamics method DEPLOYMENT single-point mooring buoy system fully Cartesian coordinates
在线阅读 下载PDF
Optimization of actuator/sensor position of multi-body system with quick startup and brake 被引量:3
9
作者 唐华平 唐春喜 殷陈锋 《Journal of Central South University of Technology》 EI 2007年第6期803-807,共5页
A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric... A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization. 展开更多
关键词 actuator/sensor multi-body system active control OPTIMIZATION genetic algorithm
在线阅读 下载PDF
Optimal design method for force in vibration control of multi-body system with quick startup and brake 被引量:3
10
作者 唐华平 彭娅清 《Journal of Central South University of Technology》 EI 2005年第4期459-464,共6页
A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa... A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication. 展开更多
关键词 vibrationl multi-body system active control
在线阅读 下载PDF
Multi-Body Dynamics Modeling and Simulation Analysis of a Vehicle Suspension Based on Graph Theory 被引量:1
11
作者 Jun Zhang Xin Li Renjie Li 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期518-526,共9页
Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure... Multi-body dynamics,relative coordinates and graph theory are combined to analyze the structure of a vehicle suspension.The dynamic equations of the left front suspension system are derived for modeling.First,The pure tire theory model is used as the input criteria of the suspension multibody system dynamic model in order to simulate the suspension K&C characteristics test.Then,it is important to verify the accuracy of this model by comparing and analyzing the experimental data and simulation results.The results show that the model has high precision and can predict the performance of the vehicle.It also provides a new solution for the vehicle dynamic modeling. 展开更多
关键词 multi-body dynamics MATLAB SUSPENSION graph theory
在线阅读 下载PDF
MOTION TYPES AND CHAOS OF MULTI-BODY SYSTEMS VIBRATING WITH IMPACTS 被引量:1
12
作者 Shu Zhongzhou Southwest Jiaotong University,Chengdu 610031,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期369-375,共7页
In this paper,the limit sets theory for an autonomous dynamical system is generalized to a multi-body system vibrating with impacts.We discover that if every motion of the system is bounded,it has only four different ... In this paper,the limit sets theory for an autonomous dynamical system is generalized to a multi-body system vibrating with impacts.We discover that if every motion of the system is bounded,it has only four different types:periodic motion 7 t,non-periodic recurrent motion γ2,and non-Poisson stable mo- tions γ3 and γ4 approaching γ1 and γ2, respectively.γ2 is the source of chaos.It is very interesting that cha- otic motions seem stochastic but possess the character of recurrence.By way of example,we discuss chaotic motions of a small ball bouncing vertically on a massive vibrating table.The result obtained by us is different from that obtained by Holmes. 展开更多
关键词 multi-body impact vibrations recurrent motion CHAOS
在线阅读 下载PDF
KEY TECHNIQUES OF MULTI-BODY MODELING OF OCCUPANT RESTRAINT SYSTEM OF VEHICLE SIDE IMPACT 被引量:3
13
作者 ZHANG Junyuan ZHANG Min +3 位作者 DING Rufang QIU Shaobo ZHANG Yu LI Hongjian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期396-400,共5页
Based on multi-body dynamics, the simulation models of auto-side structures and occupant's dynamic responses are set up, using the occupant injury simulation software MADYMO3D. These models include auto-body structur... Based on multi-body dynamics, the simulation models of auto-side structures and occupant's dynamic responses are set up, using the occupant injury simulation software MADYMO3D. These models include auto-body structure, impact barrier, seat and dummy. Definitions of multi-body and joints and dynamics properties of joints based on FE combination models, of model setup are introduced. Kelvin element of MADYMO is introduced to show the force action between non-adjoining rigid bodies, too. Then all examples of the methods mentioned are given. By the comparison of simulation and real test, the contract curves between simulation and real test for main structures and biology mechanics properties of dummy are obtained. The result shows the accuracy and validity of the models. 展开更多
关键词 Side impact multi-body Joint
在线阅读 下载PDF
STUDY ON DYNAMICS, STABILITY AND CONTROL OF MULTI-BODY FLEXIBLE STRUCTURE SYSTEM IN FUNCTIONAL SPACE 被引量:1
14
作者 XU Jian-guo(徐建国) +1 位作者 JIA Jun-guo(贾军国) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第12期1410-1421,共12页
The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed par... The dynamics, stability and control problem of a kind of infinite dimensional system are studied in the functional space with the method of modern Mathematics. First, the dynamical control model of the distributed parameter system with multi-body flexible and multi-topological structure was established which has damping, gyroscopic parts and constrained damping. Secondly, the necessary and sufficient condition of controllability and observability, the stability theory and asymptotic property of the system were obtained. These results expand the theory of the field about the dynamics and control of the system with multi-body flexible structure, and have important engineering significance. 展开更多
关键词 multi-body flexible system DYNAMICS STABILITY CONTROL functional space
在线阅读 下载PDF
An efficient formulation based on the Lagrangian method for contact–impact analysis of flexible multi-body system 被引量:7
15
作者 Peng Chen Jin-Yang Liu Jia-Zhen Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期326-334,共9页
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are t... In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y. 展开更多
关键词 multi-body dynamics Contact–impact analysis Lagrangian method Component mode synthesis
在线阅读 下载PDF
Contact-impact formulation for multi-body systems using component mode synthesis 被引量:5
16
作者 Peng Chen Jin-Yang Liu Jia-Zhen Hong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期437-442,共6页
The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis meth... The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis method for planar contact problems of flexible multi-body systems. A flexible body is divided into two parts: a contact zone and an un-contact zone. For the un-contact zone, by using the fixed-interface substructure method as reference, a few low-order modal coordinates are used to replace the nodal coordinates of the nodes, and meanwhile, the nodal coordinates of the local impact region are kept unchanged, therefore the total degrees of freedom (DOFs) are greatly cut down and the computational cost of the simulation is significantly reduced. By using additional constraint method, the impact constraint equations and kinematic constraint equations are derived, and the Lagrange equations of the first kind of flexible multi-body system are obtained. The impact of an elastic beam with a fixed half disk is simulated to verify the efficiency and accuracy of this method. 展开更多
关键词 Contact-impact analysis · Flexible multi-body system · Component mode synthesis
在线阅读 下载PDF
Investigation on the choice of boundary conditions and shape functions for flexible multi-body system 被引量:4
17
作者 Ke-Qi Pan Jin-Yang Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期180-189,共10页
The objective of this investigation is to examine the correctness and efficiency of the choice of boundary conditions when using assumed mode approach to simulate flexible multi-body systems. The displacement field du... The objective of this investigation is to examine the correctness and efficiency of the choice of boundary conditions when using assumed mode approach to simulate flexible multi-body systems. The displacement field due to deformation is approximated by the Rayleigh-Ritz assumed modes in floating frame of reference (FFR) formulation. The deformations obtained by the absolute nodal coordinate (ANC) formulation which are transformed by two sets of reference coordinates are introduced as a criterion to verify the accuracy of the simulation results by using the FFR formulation. The relationship between the deformations obtained from different boundary conditions is revealed. Nu- merical simulation examples demonstrate that the assumed modes with cantilevered-free, simply-supported and free- free boundary conditions without inclusion of rigid body modes are suitable for simulation of flexible multi-body system with large over all motion, and the same physical deformation can be obtained using those mode functions, differ only by a coordinate transformation. It is also shown that when using mode shapes with statically indeterminate boundary conditions, significant error may occur. Furthermore, the slider crank mechanism with rigid crank is accurate enough for investigating boundary condition problem of flexible multi-body system, which cost significant less simulating time. 展开更多
关键词 multi-body systems. Boundary conditions - Assumed mode approach
在线阅读 下载PDF
Dynamic Investigation on Composite Flexible Multi-body System Considering Thermal Effect 被引量:1
18
作者 潘科琪 刘锦阳 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期414-422,共9页
The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory whi... The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory which includes transverse shear deformation, and considering thermal effect, variation equations of laminated plate are derived by the principle of virtual work. The finite element method is used for discretization. According to kinematics constraint relation, dynamic equations for spatial slider-crank system are established. Simulation results show that spatial deformation (torsion deformation) appears in the multi-layered composite slider-crank mechanism which is simulated with planar motions. Furthermore, the influence of coupling between thermal expansion and flexible deformations of non-symmetrical composite plates on the large overall motion under the uniform temperature field is investigated. Finally, significant change in constraint force due to the spatial deformation is shown. 展开更多
关键词 flexible multi-body system composite plate thermal effect spatial deformation
原文传递
A flexible multi-body model of a surface miner for analyzing the interaction between rock-cutting forces and chassis vibrations 被引量:1
19
作者 Alessandro Medolago Stefano Melzi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期365-375,共11页
The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chass... The discontinuous nature of rock cutting can easily cause unwanted vibrations in the structure of a surface miner.If these vibrations are not properly addressed,the related stress cycles can gradually damage the chassis resulting in fatigue failures.These events can seriously undermine the safety of operators and digging operations may be stopped for days,with an obvious economic impact.This work presents an analysis of the dynamics of a surface miner,focusing on the interaction between cutting machine dynamics and cutting forces,which is a new approach for this type of machine.For this purpose,the authors developed a numerical model of the cutting process made up of(1)a multi-body model of the cutting machine,which takes into account the chassis's flexibility;(2)a model of the rotating cutting head;and(3)a model of the interaction between the cutting head and rock,based on Shao's model.The model was compared with experimental results and then used to investigate the effects of cutting speed and cutting depth on the machine dynamics. 展开更多
关键词 Surface miner Flexible multi-body model VALIDATION Cutting forces Chassis vibrations
在线阅读 下载PDF
Engine Multi-Body with Flexible Crankshaft Modeling and Numerical Simulation 被引量:1
20
作者 LIU Yong-hong WANG Hong +1 位作者 GU Hong-liang ZHANG You-yun 《Journal of China University of Mining and Technology》 EI 2005年第4期361-365,共5页
A multi-body model of engine system with flexible crankshaft was presented in this paper to analyze the dynamic behavior of an internal combustion engine. The flexible crankshaft structural dynamics was coupled with t... A multi-body model of engine system with flexible crankshaft was presented in this paper to analyze the dynamic behavior of an internal combustion engine. The flexible crankshaft structural dynamics was coupled with the main beating hydrodynamic lubrication in this model by a system approach. An application of an 14 engine was given to show this sophisticated simulation model and to predict the loads and the orbit plots in the journal beatings by the dynamic response of the multi-body engine system with flexible crankshaft. The numerical results show the capabilities and significance of the flexible crankshaft in this system. The objective of the research is to provide the scientific guidance for design and maintenance of the internal combustion engine. 展开更多
关键词 ENGINE piston-crankshaft system virtual prototype multi-body coupling
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部