The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to...The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to provide ideas for this issue.This strategy relied on using appropriate mechanical treatment and sodium lignosulfonate coating to improve the dispersion and interfacial compatibility of bamboo fibers in poly(lactic acid).By optimising the particle size and concentration of sodium lignosulphonate,high value-added and green composites were prepared using sectional pressurization with a venting procedure.The treated composite displayed an ultra-smooth surface(roughness of 0.592 nm),impressive transient properties(disintegration and degradation behaviour after 30 d),and outstanding ultraviolet(UV)shielding properties(100%).These properties hold the promise of being an excellent substrate for electronic devices,especially for high-precision processing,transient electronics,and UV damage prevention.The satisfactory interfacial compatibility of the composites was confirmed by detailed characterisation regarding the related physicochemical properties.This investigation offers a sustainable approach for producing high value-added green composites from biomass and biomass-derived materials.展开更多
This article provided a preparation protocol for poly(lactic acid)(PLA)/modified epoxidized soybean oil(ECP)/nano-magnesium oxide(n-MgO)ternary composites and studied their mechanical and antibacterial properties.By m...This article provided a preparation protocol for poly(lactic acid)(PLA)/modified epoxidized soybean oil(ECP)/nano-magnesium oxide(n-MgO)ternary composites and studied their mechanical and antibacterial properties.By means of an organic synthesis technique,epoxidized soybean oil(ESO)is chemically grafted to PLA to synthesize ESO chemically plastically modified PLA,abbreviated ECP.To fabricate PLA/ECP/n-MgO composite materials,ECP acts as a plasticizer and a compatibilizer simultaneously,and n-MgO acts as an enhancer.Then scanning electron microscopy,X-ray diffraction,differential scanning calorimetry,universal tester,and antibacterial research were exploited to characterize the morphology,thermal resistance,mechanical properties,and antibacterial performance of PLA/ECP/n-MgO composites.The experimental results show that ECP acts as a plasticizer by causing heterogeneous nucleation,which increases PLA's crystallinity.Evenly distributed n-MgO can greatly improve PLA's antibacterial qualities.Furthermore,ECP and n-MgO work together to improve the positive aspects of PLA/ECP/n-MgO composites,with PLA/ECP/n-MgO 100/1/0.5 composites having the best overall properties.While improving the mechanical performance and toughness of PLA,this work offers a prospective approach and foundational database for the creation of multifunctional biodegradable composites.展开更多
To retain its inherent biodegradability,simultaneously improving the strength and toughness of poly(lactic acid)(PLA)is a significant challenge.In this study,we propose an innovative multiple dynamic pressure(MDP)proc...To retain its inherent biodegradability,simultaneously improving the strength and toughness of poly(lactic acid)(PLA)is a significant challenge.In this study,we propose an innovative multiple dynamic pressure(MDP)process that can produce pure PLA with excellent mechanical properties.The MDP process generates a dynamic stretching effect by regulating the application and release of pressure,prompting disordered molecular chains to be arranged regularly along the direction of the dynamic force field.This promoted the formation of more ordered crystal forms(α-form)and strengthened the connection between the crystalline and amorphous regions.Results show that after MDP treatment,the tensile strength and strain at break of MDP-PLA are significantly improved,reaching 91.6 MPa and 80.1%respectively,which are 49.4%higher and 10 times higher than those of the samples before treatment.The mechanical properties of MDP-PLA can be regulated as needed by adjusting the cycle times and peak pressure.In addition,through a systematic study of the structural evolution of MDP-PLA,the performance regulation mechanism of the MDP process was thoroughly investigated,and the internal relationship among the process-structure-performance was clarified.This research not only opens a new technical path for the preparation of high-performance pure PLA but also provides important guidance for the high-performance modification of other semi-crystalline polymers,thus possessing significant scientific and engineering value.展开更多
Poly(lactic acid)(PLA),a bio-based polymer,is considered to be a sustainable alternative to conventional petroleum-based plastics.However,owing to its widespread use and relatively slow degradation rate in water,PLA s...Poly(lactic acid)(PLA),a bio-based polymer,is considered to be a sustainable alternative to conventional petroleum-based plastics.However,owing to its widespread use and relatively slow degradation rate in water,PLA still poses potential environmental pollution risks after being discarded.The efficient chemical recycling of PLA represents an attractive approach to addressing both resource reuse and environmental pollution challenges caused by its waste.Hydrolysis is the predominant method of industrial recycling.However,because PLA is insoluble in water,efficient heterogeneous hydrolysis requires high-temperature and high-pressure conditions.In this study,an efficient homogenous hydrolysis method capable of simultaneously dissolving PLA and calcium hydroxide(Ca(OH)_(2))was developed.Suitable solvents for this method were screened,and it was found that PLA hydrolysis using dioxane and 1,4,7,10,13-Pen-taoxacyclopentadecane as solvents achieved conversion rates of 93%and 90%,respectively,within 2 h at room temperature.Notably,the hydrolysis product,calcium lactate,precipitated as a solid from the solvent and therefore self-separated from the reaction solution.The solvent,acid/base conditions,water content,and depolymerization kinetics were investigated.Compared with previously reported hydrolysis methods,the enhanced efficiency observed in this study can be attributed to the concurrent solvation of PLA and Ca(OH)_(2),which maintains homogeneity throughout the reaction process.Additionally,this method facilitates closed-loop recycling of PLA and is compatible with the highly selective recovery of PLA from various types of PLA products.展开更多
AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mes...AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mesoporous PLA.In vitro and in vivo release experiments and ocular toxicology evaluation of the formulation were performed.The antiproliferative effect of this 5-FU-PLA tablet after glaucoma filtration surgery in rabbits was evaluated.Pathology,immunohistochemistry,and Western blot were used to further validate the inhibitory effect of this sustained release system.RESULTS:Various drug formulations were tested,and two 5-FU-PLA tablets,namely 1.5P15(5-FU 1.5 mg+PLA 15000 Da)and 2.5P15(5-FU 2.5 mg+PLA 15000 Da),had the most suitable release profiles in vitro.Further in vivo studies confirmed the safety and sustained-release profiles of both drugs.Both 5-FU-PLA tablets,relative to the free drugs,significantly inhibited tissue proliferation after glaucoma filtration and improved surgical success.Western blot showed that transforming growth factor-β(TGF-β)and connective tissue growth factor(CTGF)were inhibited by 5-FU after filtration surgery,with the effects of the 5-FU-PLA tablets being more lasting.CONCLUSION:The tested 5-FU-PLA tablets provide a sustained release of 5-FU,which may be used for a single subconjunctival implantation to inhibit proliferation after filtration surgery.展开更多
The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved ...The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.展开更多
The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt...The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.展开更多
A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfull...A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfully prepared via hydrothermal method and it was further treated with coupling agent KH-550 to improve interfacial interaction between polylactic acid(PLA)and basalt fibers(BF).It was demonstrated that the introduction of BFS could increase the crystallization of PLA and resulted in forming trans-crystallization based on TG and DSC results.The tensile strength of PLA/BF composites raised from 39 MPa to 62.5 MPa with increasing the fiber loading from 1 wt%to 10 wt%.Furthermore,the interfacial interaction could be effectively improved by assembling SiO_(2)(especially with 250 nm in diameter)on BF surface to build mechanical locking,which could keep the PLA matrix in place during the mechanical deformation with the tensile strength value raised from 62.5 MPa to 74.0 MPa.It is noticeable that the impact and flexural properties were effectively increased with the incorporation of in-situ SiO_(2) nanoparticles.The further KH-550 treatment made a positive impact as well.For instance,the impact strength and flexural strength of the sample with SiO_(2) and KH-550 modification were improved to 22.49 k J/m^(2) and 146.83 MPa and it enhanced about 42.16%and 41.04%than those of neat PLA,respectively.Therefore,an efficient enhancement of mechanical performance was achieved and this concept of assembling in-situ SiO_(2) on silica-based fiber as a modifier was a novel and simple path to design the interfacial construction and properties of the polymer composites.展开更多
Scrap leather fibers(SLFs) modified with active silane containing epoxide groups were incorporated into poly(lactic acid)(PLA) modified by vinyl trimethoxysilane,i.e.,the PLA/SLF composites were prepared for bio-compo...Scrap leather fibers(SLFs) modified with active silane containing epoxide groups were incorporated into poly(lactic acid)(PLA) modified by vinyl trimethoxysilane,i.e.,the PLA/SLF composites were prepared for bio-composites by solvent compounding technology in this article.The effects of silane coupling agents on the structures of PLA and SLF molecules were examined,and the mechanical properties and thermal stability of PLA/SLF composites were also measured.The results of Fourier-transform infrared spectroscopy(FTIR) had proved that silane had been incorporated successfully to PLA and SLF molecules by means of the solvent technology.Scanning electric microscopy(SEM) was used to investigate both the changes in shapes between the pristine SLFs and the treated SLFs and the microscopic structures of composites.According to SEM results,it was shown that there were some significant differences between the untreated and treated SLFs,and a double continuous phase structure had occurred in PLA/SLF composites due to the excellent dispersion of SLFs in matrix.The addition of the treated SLFs into PLA resulted in a distinct improvement of the impact and tensile strengths.When the mass fraction of the treated SLFs was 15%,the notched impact strength and tensile strength of PLA/SLF bio-composites were improved by 34.4%and 21.2%compared with the pristine PLA,respectively. Additionally,with the increase of the modified SLFs content,the thermal stability of PLA/SLF bi-composites was apparently improved.The macroscopic properties of bio-composites were found to be strongly dependent on their components,concentration,dispersion and resulted morphological structures.展开更多
Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a ...Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).展开更多
The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The res...The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The results show that the properties of the composites are better than those of plain PLA. When the content of the fiber is 30%, the composites can get the best mechanical properties. The dynamic mechanical analysis results show that the storage moduli of the PLA/ramie and PLA/jute composites increase with respect to the plain PLA. The Vicat softening temperature of the composites is greatly higher than that of PLA. The results of thermogravimetric analysis show that adding fiber to the PLA matrix can improve the degradation temperature of PLA.展开更多
In order to obtain a uniform and effectively toughened poly(lactic acid)film by blending with low content of poly(ethylene octene)(POE)with high elasticity,the tailored interfacial intermolecular interaction and entan...In order to obtain a uniform and effectively toughened poly(lactic acid)film by blending with low content of poly(ethylene octene)(POE)with high elasticity,the tailored interfacial intermolecular interaction and entanglement between the two phases of the PLA/POE blend was innovatively constructed via the facile reactive melt blending process through the reaction of the epoxy/anhydride groups grafted on the POE chains with the end groups of PLA chains(PLA/GPOE-MPOE).It was observed that POE domains were embedded tightly in PLA matrix with a fuzzy interface and abundant interface transition area,and the impact fractured surface of the blend showed an obvious plastic deformation with less occurrence of fibrillation of PLA matrix or interfacial de-bonding.Compared with neat PLA and directly blended PLA/POE blends,the PLA/GPOE-MPOE blend exhibited much higher complex viscosity/storage modulus,much lower tanδvalues in the terminal region,and obvious strain-hardening behavior.The deviation in viscoelastic behavior of PLA/GPOE-MPOE from linear PLA indicated the enhanced molecular entanglement between the long-branched chains,resulting in an enhancement of the stretching ability during biaxial drawing of the blend.Uniform PLA/GPOE-MPOE films with draw ratio as high as 7×7 were obtained through biaxial stretching,which showed much higher tensile strength and the elongation at break than that of neat PLA and PLA/POE film.This work provides a facile method for fabricating toughening PLA films with application potentials.展开更多
基金supported by the National Natural Science Foundation of China(Nos.31971741 and 31760195)the Yunnan Fundamental Research Projects(Nos.2018FB066 and 202001AT070141)the Yunnan Agricultural Basic Research Special Projects(No.202101BD070001-086).
文摘The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to provide ideas for this issue.This strategy relied on using appropriate mechanical treatment and sodium lignosulfonate coating to improve the dispersion and interfacial compatibility of bamboo fibers in poly(lactic acid).By optimising the particle size and concentration of sodium lignosulphonate,high value-added and green composites were prepared using sectional pressurization with a venting procedure.The treated composite displayed an ultra-smooth surface(roughness of 0.592 nm),impressive transient properties(disintegration and degradation behaviour after 30 d),and outstanding ultraviolet(UV)shielding properties(100%).These properties hold the promise of being an excellent substrate for electronic devices,especially for high-precision processing,transient electronics,and UV damage prevention.The satisfactory interfacial compatibility of the composites was confirmed by detailed characterisation regarding the related physicochemical properties.This investigation offers a sustainable approach for producing high value-added green composites from biomass and biomass-derived materials.
基金Funded by the National Natural Science Foundation of China(No.21104031)the Education Department of Hunan province in 2020(No.20C1589)。
文摘This article provided a preparation protocol for poly(lactic acid)(PLA)/modified epoxidized soybean oil(ECP)/nano-magnesium oxide(n-MgO)ternary composites and studied their mechanical and antibacterial properties.By means of an organic synthesis technique,epoxidized soybean oil(ESO)is chemically grafted to PLA to synthesize ESO chemically plastically modified PLA,abbreviated ECP.To fabricate PLA/ECP/n-MgO composite materials,ECP acts as a plasticizer and a compatibilizer simultaneously,and n-MgO acts as an enhancer.Then scanning electron microscopy,X-ray diffraction,differential scanning calorimetry,universal tester,and antibacterial research were exploited to characterize the morphology,thermal resistance,mechanical properties,and antibacterial performance of PLA/ECP/n-MgO composites.The experimental results show that ECP acts as a plasticizer by causing heterogeneous nucleation,which increases PLA's crystallinity.Evenly distributed n-MgO can greatly improve PLA's antibacterial qualities.Furthermore,ECP and n-MgO work together to improve the positive aspects of PLA/ECP/n-MgO composites,with PLA/ECP/n-MgO 100/1/0.5 composites having the best overall properties.While improving the mechanical performance and toughness of PLA,this work offers a prospective approach and foundational database for the creation of multifunctional biodegradable composites.
基金supported by the National Key Research and Development Program of China(No.2023YFC3904604)the Fundamental Research Funds for the Central Universities(No.2024ZYGXZR080)+1 种基金Science and Technology Project of Guangzhou(No.2025A04J3914)Research and Development Program of Jiangmen(No.2023780200030009506).
文摘To retain its inherent biodegradability,simultaneously improving the strength and toughness of poly(lactic acid)(PLA)is a significant challenge.In this study,we propose an innovative multiple dynamic pressure(MDP)process that can produce pure PLA with excellent mechanical properties.The MDP process generates a dynamic stretching effect by regulating the application and release of pressure,prompting disordered molecular chains to be arranged regularly along the direction of the dynamic force field.This promoted the formation of more ordered crystal forms(α-form)and strengthened the connection between the crystalline and amorphous regions.Results show that after MDP treatment,the tensile strength and strain at break of MDP-PLA are significantly improved,reaching 91.6 MPa and 80.1%respectively,which are 49.4%higher and 10 times higher than those of the samples before treatment.The mechanical properties of MDP-PLA can be regulated as needed by adjusting the cycle times and peak pressure.In addition,through a systematic study of the structural evolution of MDP-PLA,the performance regulation mechanism of the MDP process was thoroughly investigated,and the internal relationship among the process-structure-performance was clarified.This research not only opens a new technical path for the preparation of high-performance pure PLA but also provides important guidance for the high-performance modification of other semi-crystalline polymers,thus possessing significant scientific and engineering value.
基金financially supported by the National Key R&D Program of China(No.2021YFB3801901)the National Natural Science Foundation of China(No.22075188 and U19A2095)supported by State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology。
文摘Poly(lactic acid)(PLA),a bio-based polymer,is considered to be a sustainable alternative to conventional petroleum-based plastics.However,owing to its widespread use and relatively slow degradation rate in water,PLA still poses potential environmental pollution risks after being discarded.The efficient chemical recycling of PLA represents an attractive approach to addressing both resource reuse and environmental pollution challenges caused by its waste.Hydrolysis is the predominant method of industrial recycling.However,because PLA is insoluble in water,efficient heterogeneous hydrolysis requires high-temperature and high-pressure conditions.In this study,an efficient homogenous hydrolysis method capable of simultaneously dissolving PLA and calcium hydroxide(Ca(OH)_(2))was developed.Suitable solvents for this method were screened,and it was found that PLA hydrolysis using dioxane and 1,4,7,10,13-Pen-taoxacyclopentadecane as solvents achieved conversion rates of 93%and 90%,respectively,within 2 h at room temperature.Notably,the hydrolysis product,calcium lactate,precipitated as a solid from the solvent and therefore self-separated from the reaction solution.The solvent,acid/base conditions,water content,and depolymerization kinetics were investigated.Compared with previously reported hydrolysis methods,the enhanced efficiency observed in this study can be attributed to the concurrent solvation of PLA and Ca(OH)_(2),which maintains homogeneity throughout the reaction process.Additionally,this method facilitates closed-loop recycling of PLA and is compatible with the highly selective recovery of PLA from various types of PLA products.
基金Supported by the National Natural Science Foundation of China(No.82301211)Beijing Natural Science Foundation(No.J230028).
文摘AIM:To develop a 5-fluorouracil(5-FU)mesoporous poly(lactic)acid(PLA)delivery system for glaucoma filtration surgery suitable for a single subconjunctival implantation.METHODS:The 5-FU was infiltration-loaded into mesoporous PLA.In vitro and in vivo release experiments and ocular toxicology evaluation of the formulation were performed.The antiproliferative effect of this 5-FU-PLA tablet after glaucoma filtration surgery in rabbits was evaluated.Pathology,immunohistochemistry,and Western blot were used to further validate the inhibitory effect of this sustained release system.RESULTS:Various drug formulations were tested,and two 5-FU-PLA tablets,namely 1.5P15(5-FU 1.5 mg+PLA 15000 Da)and 2.5P15(5-FU 2.5 mg+PLA 15000 Da),had the most suitable release profiles in vitro.Further in vivo studies confirmed the safety and sustained-release profiles of both drugs.Both 5-FU-PLA tablets,relative to the free drugs,significantly inhibited tissue proliferation after glaucoma filtration and improved surgical success.Western blot showed that transforming growth factor-β(TGF-β)and connective tissue growth factor(CTGF)were inhibited by 5-FU after filtration surgery,with the effects of the 5-FU-PLA tablets being more lasting.CONCLUSION:The tested 5-FU-PLA tablets provide a sustained release of 5-FU,which may be used for a single subconjunctival implantation to inhibit proliferation after filtration surgery.
基金This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoalde Nível Superior-Brasil(CAPES)-Finance Code 001.
文摘The continuous improvement in patient care and recovery is driving the development of innovative materials for medical applications.Medical sutures,essential for securing implants and closing deep wounds,have evolved to incorporate smart materials capable of responding to various stimuli.This study explores the potential of thermoresponsive sutures,made from shape memory materials,that contract upon heating to bring loose stitches closer together,promoting optimal wound closure.We developed nanocomposites based on a blend of poly(lactic acid)(PLA)and thermoplastic polyurethane(TPU)—biopolymers that inherently exhibit shape memory—enhanced with carbon nanotubes(CNT)and graphene nanoplatelets(GN)to improve mechanical performance.PLA/TPU(50/50)nanocomposites were prepared with 1 and 2 wt%GN,as well as hybrid formulations combining 1 wt%CNT with 1 or 2 wt%GN,using a twin-screw extrusion process to form filaments.These filaments were characterized through differential scanning calorimetry(DSC),field emission gun scanning electron microscopy(FEG-SEM),tensile testing,and shape memory assessments.While the PLA/TPU blend is immiscible,TPU enhances the crystallinity(X_(c))of the PLA phase,further increased by the addition of CNT and GN.FEG-SEM images indicate CNTs primarily in the PLA phase and GN in the TPU phase.PLA/TPU with 1 or 2 wt%GN showed the highest potential for suture applications,with a high elastic modulus(~1000 MPa),significant strain at break(~10%),and effective shape recovery(~20%at 55℃ for 30 min).These findings suggest that these nanocomposites can enhance suture performance with controlled shape recovery that is suitable for medical use.
基金support from the National Natural Science Foundation of China(Grant Nos.21908031 and 51903092)the China Postdoctoral Science Foundation funded project(Grant No.2019M652884)support from Guangdong Special Support Program(Grant No.2017TX04N371)。
文摘The effect of Ti3C2 MXene nanosheets on the intumescent flame retardant(IFR)poly(lactic acid)(PLA)composites was investigated among a series of PLA/IFR/MXene,which were prepared by melt blending 0-2.0 wt%MXene,10.0 wt%-12.0 wt%IFR and PLA together.The results of limiting oxygen index(LOI)and vertical burning(UL-94)discover that the combination of 0.5 wt%MXene and 11.5 wt%IFR synergistically improves the fire safety of PLA to reach UL-94 V-0 rating with LOI value of 33.0%.The PLA/IFR/MXene composites perform an obvious reduction in peak of heat release rate(HRR)in cone calorimeter tests(CCTs).Furthermore,the carbon residues after CCTs were characterized by scanning electron microscope(SEM),laser Raman spectroscopy(LRS),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).It is demonstrated that both the titanium composition of the MXene structure and the characteristics of the two-dimensional material enhance the PLA/IFR/MXene composite materials’ability to produce a dense barrier layer to resist burnout during thermal degradation.
基金funded by China Postdoctoral Science Foundation(No.2018M643699)the Xi’an Science and Technology Bureau Innovation Leading Projects(No.201805037YD15CG21(23))+2 种基金the Natural Science Foundation of Shaanxi Province(No.2019JQ741)the Science and Technology Bureau of Beilin District,Xi’an(No.GX2035)the Postdoctoral Science Foundation of Shaanxi Province(No.2018BSHEDZZ101)。
文摘A valid strategy to tailor the properties of polylactic acid for more extensive applications was introducing filler.In this work,basalt fiber assembled with in-situ SiO_(2) nanoparticles on the surface was successfully prepared via hydrothermal method and it was further treated with coupling agent KH-550 to improve interfacial interaction between polylactic acid(PLA)and basalt fibers(BF).It was demonstrated that the introduction of BFS could increase the crystallization of PLA and resulted in forming trans-crystallization based on TG and DSC results.The tensile strength of PLA/BF composites raised from 39 MPa to 62.5 MPa with increasing the fiber loading from 1 wt%to 10 wt%.Furthermore,the interfacial interaction could be effectively improved by assembling SiO_(2)(especially with 250 nm in diameter)on BF surface to build mechanical locking,which could keep the PLA matrix in place during the mechanical deformation with the tensile strength value raised from 62.5 MPa to 74.0 MPa.It is noticeable that the impact and flexural properties were effectively increased with the incorporation of in-situ SiO_(2) nanoparticles.The further KH-550 treatment made a positive impact as well.For instance,the impact strength and flexural strength of the sample with SiO_(2) and KH-550 modification were improved to 22.49 k J/m^(2) and 146.83 MPa and it enhanced about 42.16%and 41.04%than those of neat PLA,respectively.Therefore,an efficient enhancement of mechanical performance was achieved and this concept of assembling in-situ SiO_(2) on silica-based fiber as a modifier was a novel and simple path to design the interfacial construction and properties of the polymer composites.
基金the China Postdoctoral Science Foundation (No.20100470755)the Financial Supports of Department of Education of Zhejiang Province (No.Z20119661)
文摘Scrap leather fibers(SLFs) modified with active silane containing epoxide groups were incorporated into poly(lactic acid)(PLA) modified by vinyl trimethoxysilane,i.e.,the PLA/SLF composites were prepared for bio-composites by solvent compounding technology in this article.The effects of silane coupling agents on the structures of PLA and SLF molecules were examined,and the mechanical properties and thermal stability of PLA/SLF composites were also measured.The results of Fourier-transform infrared spectroscopy(FTIR) had proved that silane had been incorporated successfully to PLA and SLF molecules by means of the solvent technology.Scanning electric microscopy(SEM) was used to investigate both the changes in shapes between the pristine SLFs and the treated SLFs and the microscopic structures of composites.According to SEM results,it was shown that there were some significant differences between the untreated and treated SLFs,and a double continuous phase structure had occurred in PLA/SLF composites due to the excellent dispersion of SLFs in matrix.The addition of the treated SLFs into PLA resulted in a distinct improvement of the impact and tensile strengths.When the mass fraction of the treated SLFs was 15%,the notched impact strength and tensile strength of PLA/SLF bio-composites were improved by 34.4%and 21.2%compared with the pristine PLA,respectively. Additionally,with the increase of the modified SLFs content,the thermal stability of PLA/SLF bi-composites was apparently improved.The macroscopic properties of bio-composites were found to be strongly dependent on their components,concentration,dispersion and resulted morphological structures.
基金Supported by the National Natural Science Foundation of China(21476065)the China National Tobacco Corporation
文摘Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).
基金Project(07XD14029) supported by the Program of Shanghai Subject Chief ScientistProject(075207046) supported by the Fund of Shanghai International Co-operation of Science and Technology+1 种基金Project(075211015) supported by the Key Science and Technologies Research and Development Program of Shanghai, ChinaProject(NCET-07-0620) supported by the Program for New Century Excellent Talents in University, China
文摘The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The results show that the properties of the composites are better than those of plain PLA. When the content of the fiber is 30%, the composites can get the best mechanical properties. The dynamic mechanical analysis results show that the storage moduli of the PLA/ramie and PLA/jute composites increase with respect to the plain PLA. The Vicat softening temperature of the composites is greatly higher than that of PLA. The results of thermogravimetric analysis show that adding fiber to the PLA matrix can improve the degradation temperature of PLA.
基金financially supported by the National Natural Science Foundation of China(No.51773122 and No.51933007)the International Scientific and Technological Cooperation Project of Sichuan Province(No.2020YFH0084)
文摘In order to obtain a uniform and effectively toughened poly(lactic acid)film by blending with low content of poly(ethylene octene)(POE)with high elasticity,the tailored interfacial intermolecular interaction and entanglement between the two phases of the PLA/POE blend was innovatively constructed via the facile reactive melt blending process through the reaction of the epoxy/anhydride groups grafted on the POE chains with the end groups of PLA chains(PLA/GPOE-MPOE).It was observed that POE domains were embedded tightly in PLA matrix with a fuzzy interface and abundant interface transition area,and the impact fractured surface of the blend showed an obvious plastic deformation with less occurrence of fibrillation of PLA matrix or interfacial de-bonding.Compared with neat PLA and directly blended PLA/POE blends,the PLA/GPOE-MPOE blend exhibited much higher complex viscosity/storage modulus,much lower tanδvalues in the terminal region,and obvious strain-hardening behavior.The deviation in viscoelastic behavior of PLA/GPOE-MPOE from linear PLA indicated the enhanced molecular entanglement between the long-branched chains,resulting in an enhancement of the stretching ability during biaxial drawing of the blend.Uniform PLA/GPOE-MPOE films with draw ratio as high as 7×7 were obtained through biaxial stretching,which showed much higher tensile strength and the elongation at break than that of neat PLA and PLA/POE film.This work provides a facile method for fabricating toughening PLA films with application potentials.