期刊文献+
共找到1,126篇文章
< 1 2 57 >
每页显示 20 50 100
基于RK-LS-SVM求常微分方程的近似解
1
作者 胡蝶 吴俊 +1 位作者 肖海霞 黄尚柱 《湖北汽车工业学院学报》 2025年第1期20-22,27,共4页
针对线性常微分方程的初值问题,提出一种将Runge-Kutta法与最小二乘支持向量机(LS-SVM)相结合的RK-LS-SVM方法求近似解。首先通过4阶Runge-Kutta法求出微分方程的数值解,然后将此数值解转化为LSSVM回归模型的约束条件,进而求解优化问题... 针对线性常微分方程的初值问题,提出一种将Runge-Kutta法与最小二乘支持向量机(LS-SVM)相结合的RK-LS-SVM方法求近似解。首先通过4阶Runge-Kutta法求出微分方程的数值解,然后将此数值解转化为LSSVM回归模型的约束条件,进而求解优化问题,所得闭式近似解连续可微,精度较高。数值算例验证了RK-LSSVM方法的有效性和可行性。 展开更多
关键词 RUNGE-KUTTA法 ls-svm 线性常微分方程 初值问题
在线阅读 下载PDF
基于小波包和LS-SVM模型的滚动轴承故障诊断
2
作者 孙晓涛 《中国科技论文在线精品论文》 2025年第3期115-117,共3页
本文基于频谱分析结合小波包变换方法提取滚动轴承振动数据的能量特征,分频段分别提取能量特征构建特征向量,试验对比最小二乘支持向量机诊断模型和自适应遗传算法优化后的最小二乘支持向量机诊断模型的诊断准确率,验证遗传算法的有效... 本文基于频谱分析结合小波包变换方法提取滚动轴承振动数据的能量特征,分频段分别提取能量特征构建特征向量,试验对比最小二乘支持向量机诊断模型和自适应遗传算法优化后的最小二乘支持向量机诊断模型的诊断准确率,验证遗传算法的有效性。通过交叉和变异来优化最小二乘支持向量机的权重和结构参数,增强模型的泛化能力,对提取的滚动轴承故障数据的能量特征进行诊断和识别,具有积极实际装车应用价值,可以实时诊断轨道交通列车滚动轴承的运行状态。 展开更多
关键词 机械学 轨道交通 最小二乘支持向量机(ls-svm) 小波包 信号处理
在线阅读 下载PDF
基于PSO算法的LS-SVM在医疗管理系统中财务管理与决策系统的应用
3
作者 姚欣 王君杰 《微型电脑应用》 2025年第2期273-276,共4页
为了提高医疗管理系统中财务管理和决策系统的精确度和运行效率,利用支持向量机(SVM)对财务数据等进行分析,并构建最小二乘支持向量机(LS-SVM)模型,结合粒子群优化(PSO)算法对参数进行自动寻优;随后将利用PSO算法优化的LS-SVM(PSO-LS-S... 为了提高医疗管理系统中财务管理和决策系统的精确度和运行效率,利用支持向量机(SVM)对财务数据等进行分析,并构建最小二乘支持向量机(LS-SVM)模型,结合粒子群优化(PSO)算法对参数进行自动寻优;随后将利用PSO算法优化的LS-SVM(PSO-LS-SVM)应用到医疗管理系统中的财务管理和决策系统中,以提供实时动态财务数据,并推动医疗管理系统的数字化建设。研究结果表明,PSO-LS-SVM能够降低算法的整体复杂程度,加快机器运算的效率,使得收敛速度得到大幅度提升。利用PSO-LS-SVM对财务数据进行仿真,发现其具有较高的精确率,偏差值介于0~0.6;在SVM、LS-SVM、PSO-LS-SVM 3种算法中,SVM的偏差值最大,LS-SVM次之,PSO-LS-SVM最小,说明基于PSO优化的LS-SVM能够为医疗系统中的财务管理和决策系统提供更加科学的服务。 展开更多
关键词 PSO ls-svm 医疗管理系统 财务管理 决策系统
在线阅读 下载PDF
优化算法提高LS-SVM模型预测爆破振动峰值速度的性能研究
4
作者 邓长庆 郑皓文 张国鹏 《河南科学》 2025年第6期831-837,共7页
为了提高爆破振动峰值速度的预测效果,采用最小二乘支持向量机(LS-SVM)模型预测爆破振动峰值速度,利用细菌觅食(BFO)、人工鱼群(AFSA)和自适应粒子群(APSO)三种优化算法确定LS-SVM模型控制参数。在构建的BFO-LSSVM、AFSA-LSSVM和APSO-LS... 为了提高爆破振动峰值速度的预测效果,采用最小二乘支持向量机(LS-SVM)模型预测爆破振动峰值速度,利用细菌觅食(BFO)、人工鱼群(AFSA)和自适应粒子群(APSO)三种优化算法确定LS-SVM模型控制参数。在构建的BFO-LSSVM、AFSA-LSSVM和APSO-LSSVM预测模型中,以水平距离、高程、总药量、最大单响药量、炮孔进深作为输入参数,以爆破振动峰值速度作为输出参数。同时采用LS-SVM模型作为对照组,与优化后的模型进行比较。并基于滇中引水工程引水隧洞现场测试采集的30组数据集对上述模型进行训练和测试。对比分析预测结果,三种优化方法均能提高LS-SVM模型的预测效果,其中,AFSA-LSSVM模型(R2=0.9874,AARD=2.9562)的综合表现最优。 展开更多
关键词 爆破振动峰值速度 ls-svm 细菌觅食算法 人工鱼群算法 自适应粒子群算法
在线阅读 下载PDF
基于改进LS-SVM的航空发动机传感器故障诊断与自适应重构控制 被引量:24
5
作者 蔡开龙 谢寿生 +1 位作者 杨伟 吴勇 《航空动力学报》 EI CAS CSCD 北大核心 2008年第6期1118-1126,共9页
提出了一种基于改进LS-SVM的航空发动机传感器故障诊断与自适应重构控制方法.该方法通过给误差变量赋予不同权值因子提高LS-SVM的鲁棒性,采用修剪算法提高LS-SVM的稀疏性;该方法从某涡扇发动机输入输出空间中建立其正常模型,采用阈值判... 提出了一种基于改进LS-SVM的航空发动机传感器故障诊断与自适应重构控制方法.该方法通过给误差变量赋予不同权值因子提高LS-SVM的鲁棒性,采用修剪算法提高LS-SVM的稀疏性;该方法从某涡扇发动机输入输出空间中建立其正常模型,采用阈值判别法对传感器故障进行实时监视与诊断,并用模型输出值代替故障传感器测量值反馈回闭环控制系统,实现对发动机的自适应重构控制.仿真结果表明,该方法能及时准确地定位故障,并进行有效的自适应重构控制. 展开更多
关键词 航空 航天推进系统 航空发动机 改进最小二乘支持向量机(ls-svm) 传感器 故障诊断 自适应重构控制
在线阅读 下载PDF
基于DT-CWT和LS-SVM的苹果果梗/花萼和缺陷识别 被引量:18
6
作者 宋怡焕 饶秀勤 应义斌 《农业工程学报》 EI CAS CSCD 北大核心 2012年第9期114-118,共5页
该文提出了一种基于双树复小波变换(DT-CWT)和最小二乘支持向量机(LS-SVM)区分苹果的果梗/花萼和缺陷的方法。对苹果图像使用DT-CWT分解,使用变换后得到的高频子带系数的均值和方差构造特征向量,然后使用最小支持二乘向量机作为分类器... 该文提出了一种基于双树复小波变换(DT-CWT)和最小二乘支持向量机(LS-SVM)区分苹果的果梗/花萼和缺陷的方法。对苹果图像使用DT-CWT分解,使用变换后得到的高频子带系数的均值和方差构造特征向量,然后使用最小支持二乘向量机作为分类器进行分类。对180幅苹果图像进行了试验。讨论了DT-CWT分解层数以及目标图像大小对分类正确率的影响。试验结果显示,使用3层DT-CWT对大小为64×64子图像进行小波分解提取纹理特征,能达到最好的分类效果,分类正确率可以达到95.6%。 展开更多
关键词 机器视觉 最小二乘支持向量机(ls-svm) 识别 特征提取 双树复小波变换(DT-CWT) 缺陷 果梗/花萼 苹果
在线阅读 下载PDF
LS-SVM算法中优化训练样本对测深异常值剔除的影响 被引量:19
7
作者 黄贤源 翟国君 +3 位作者 隋立芬 黄谟涛 欧阳永忠 柴洪洲 《测绘学报》 EI CSCD 北大核心 2011年第1期22-27,共6页
在验证趋势面滤波是最小二乘支持向量机算法(LS-SVM)取特定参数解的基础上,利用LS-SVM所构造的海底趋势面对测深异常值进行剔除。为了克服LS-SVM解非稀疏性的缺点,同时抑制偏差较大的训练样本对海底趋势面构造的影响,提出一种基于局部... 在验证趋势面滤波是最小二乘支持向量机算法(LS-SVM)取特定参数解的基础上,利用LS-SVM所构造的海底趋势面对测深异常值进行剔除。为了克服LS-SVM解非稀疏性的缺点,同时抑制偏差较大的训练样本对海底趋势面构造的影响,提出一种基于局部样本中心距离的训练样本优化方法。为了检验该算法的有效性,选取实测的多波束测深数据进行验证,结果表明在训练样本优化的基础上,通过调整LS-SVM的参数可以得到更为合理的海底趋势面,测深异常值地剔除也更为有效。 展开更多
关键词 最小二乘支持向量机 趋势面滤波 局部样本中心距离 测深异常值
在线阅读 下载PDF
露天采矿爆破振动对民房破坏的LS-SVM预测模型 被引量:41
8
作者 邵良杉 白媛 +1 位作者 邱云飞 杜占玮 《煤炭学报》 EI CAS CSCD 北大核心 2012年第10期1637-1642,共6页
利用支持向量机学习原理,研究露天采矿爆破振动对民房破坏的预测问题。选取爆破振动幅值、主频率、主频率持续时间、灰缝强度、砖墙面积率、房屋高度、屋盖形式、圈梁构造柱、施工质量和场地条件作为露天采矿爆破振动对民房破坏的影响因... 利用支持向量机学习原理,研究露天采矿爆破振动对民房破坏的预测问题。选取爆破振动幅值、主频率、主频率持续时间、灰缝强度、砖墙面积率、房屋高度、屋盖形式、圈梁构造柱、施工质量和场地条件作为露天采矿爆破振动对民房破坏的影响因素,以工程实际检测数据为训练样本,建立露天采矿爆破振动对民房破坏的LS-SVM预测模型。利用32组爆破实验数据作为学习样本对支持向量机进行训练,建立相应的预测模型并通过回代估计方法进行回检,误判率为0,用另外12组现场实验数据作为检验样本进行测试,测试结果良好。结果表明,LS-SVM预测方法的误判率低,判别精度高,为露天采矿爆破振动对民房破坏预测提供了一种行之有效的新方法,可以在实际相关工程中展开使用。 展开更多
关键词 露天采矿 爆破振动 民房破坏 ls-svm
在线阅读 下载PDF
基于模糊熵与LS-SVM的轴承故障诊断 被引量:22
9
作者 杨望灿 张培林 +1 位作者 任国全 李俊 《机械强度》 CAS CSCD 北大核心 2014年第5期666-670,共5页
由于滚动轴承不同状态的振动信号具有不同复杂度的特点,提出利用模糊熵和最小二乘支持向量机(LSSVM)实现轴承故障的准确诊断。模糊熵将模糊理论引入到数据序列的复杂度测度中,能够测量出不同复杂度的数据序列。根据模糊熵计算方法,选择... 由于滚动轴承不同状态的振动信号具有不同复杂度的特点,提出利用模糊熵和最小二乘支持向量机(LSSVM)实现轴承故障的准确诊断。模糊熵将模糊理论引入到数据序列的复杂度测度中,能够测量出不同复杂度的数据序列。根据模糊熵计算方法,选择最优参数计算轴承振动信号的模糊熵,作为区分轴承不同故障状态的特征参数。以轴承振动信号的模糊熵为输入,以最小二乘支持向量机为分类器,准确识别轴承故障状态。轴承实测振动信号分析表明,方法能够有效诊断轴承故障,提高故障诊断的准确率。 展开更多
关键词 模糊熵 最小二乘支持向量机 滚动轴承 故障诊断
在线阅读 下载PDF
基于K-L变换与LS-SVM的玉米品种识别方法 被引量:20
10
作者 权龙哲 祝荣欣 +1 位作者 雷溥 韩豹 《农业机械学报》 EI CAS CSCD 北大核心 2010年第4期168-172,共5页
为实现外观相似的不同玉米品种的有效识别,提出了K-L变换与最小二乘支持向量机相结合的籽粒品种鉴别方法。采用标记算法及多尺度小波分析方法获得玉米单籽粒图像,应用K-L变换技术提取籽粒图像的特征数据,设计了二叉树型多类LS-SVM分类器... 为实现外观相似的不同玉米品种的有效识别,提出了K-L变换与最小二乘支持向量机相结合的籽粒品种鉴别方法。采用标记算法及多尺度小波分析方法获得玉米单籽粒图像,应用K-L变换技术提取籽粒图像的特征数据,设计了二叉树型多类LS-SVM分类器,实现了对特征数据的有效分类。通过试验分析,确定了较为合理的状态空间维数(L=3),正确识别率可达95.3%。 展开更多
关键词 玉米品种 模式识别 图像处理 K-L变换 最小二乘支持向量机
在线阅读 下载PDF
基于灰色关联分析的LS-SVM铁路货运量预测 被引量:49
11
作者 耿立艳 张天伟 赵鹏 《铁道学报》 EI CAS CSCD 北大核心 2012年第3期1-6,共6页
为提高对铁路货运量的预测精度及建模速度,在分析货运量影响因素基础上,提出基于灰色关联分析的LS-SVM铁路货运量预测方法。将货运量影响因素分为社会需求与铁路供给两方面因素,采用灰色关联分析法对两方面因素与货运量进行相关性分析,... 为提高对铁路货运量的预测精度及建模速度,在分析货运量影响因素基础上,提出基于灰色关联分析的LS-SVM铁路货运量预测方法。将货运量影响因素分为社会需求与铁路供给两方面因素,采用灰色关联分析法对两方面因素与货运量进行相关性分析,根据灰色关联度值,结合定性分析筛选LS-SVM输入变量,简化LS-SVM结构,再通过随机权重粒子群(SIWPSO)算法优化选择LS-SVM模型参数。通过对我国1980~2009年铁路货运量实例分析表明:该方法具有较快的收敛速度和较高的预测精度。 展开更多
关键词 铁路货运量 预测 灰色关联分析 最小二乘支持向量机
在线阅读 下载PDF
基于LS-SVM的信用评价方法 被引量:8
12
作者 钟波 肖智 +1 位作者 刘朝林 陈玲 《统计研究》 CSSCI 北大核心 2005年第11期29-31,共3页
In this paper, a new method based on LS-SVM (Least Squares Support Vector Machines) is presented to deal with credit assessment in commercial banks for solving the problem of inadequate samples of the financial data,w... In this paper, a new method based on LS-SVM (Least Squares Support Vector Machines) is presented to deal with credit assessment in commercial banks for solving the problem of inadequate samples of the financial data,which usually happended in most banks in China.On the basis of SLT(Statistical Learning Theory),this approach with methodology of SRM (Structural Risk Minimization)will overcome the shortcomings of traditional credit assessment models,such as over fitting and local optimization,and,by using kernel functions in model,it will effectively solve the problems of linear inseparability and selecting parameters of model.The approach has some good properties including a generalization ability and global optimization in terms of sample processing.It is a new way for the credit assessment on the condition of small samples from bank data.The feasibility,effectiveness and practicability of presented approach was verified by experiments. 展开更多
关键词 信用评价系统 个人消费贷款 国内商业银行 零售业务 风险管理 消费信贷 住房按揭 汽车贷款 教育贷款 组成部分
在线阅读 下载PDF
基于泡沫特征与LS-SVM的浮选回收率预测 被引量:29
13
作者 周开军 阳春华 +1 位作者 牟学民 桂卫华 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第6期1295-1300,共6页
针对矿物浮选过程中回收率难以在线检测的问题,提出了一种回收率预测方法。采用最小二乘支持向量机构造预测模型,以图像特征作为模型输入,通过交叉验证实现模型参数优化。为提取泡沫特征,通过计算图像相对红色分量提取颜色特征,结合聚... 针对矿物浮选过程中回收率难以在线检测的问题,提出了一种回收率预测方法。采用最小二乘支持向量机构造预测模型,以图像特征作为模型输入,通过交叉验证实现模型参数优化。为提取泡沫特征,通过计算图像相对红色分量提取颜色特征,结合聚类与分水岭方法分割泡沫图像并提取尺寸特征,利用像素分析方法提取承载量特征,采用图像对的相关性分析方法提取泡沫速度、破碎率等动态特征,并对泡沫特征与回收率进行了相关性分析。实验结果表明,该方法能有效预测回收率。 展开更多
关键词 矿物浮选 泡沫图像 特征提取 回收率预测 最小二乘支持向量机
在线阅读 下载PDF
基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法 被引量:18
14
作者 马小骏 任淑红 +1 位作者 左洪福 文振华 《交通运输工程学报》 EI CSCD 北大核心 2015年第3期92-100,共9页
以航空发动机的实际性能监测数据为基础,建立了时变性能退化模型,并进行了性能趋势预测。根据监测数据中大量与在翼寿命紧密相关的信息,分析了性能退化过程与失效分布函数之间的关系,得到了给定可靠度下的航空发动机在翼寿命。以航空发... 以航空发动机的实际性能监测数据为基础,建立了时变性能退化模型,并进行了性能趋势预测。根据监测数据中大量与在翼寿命紧密相关的信息,分析了性能退化过程与失效分布函数之间的关系,得到了给定可靠度下的航空发动机在翼寿命。以航空发动机的实际在翼寿命为基础,利用K-S拟合检验方法对在翼寿命分布模型进行检验,采用最小二乘支持向量机确定了模型参数。结合性能退化趋势,计算了修正后的航空发动机在翼寿命,并以6台PW4000航空发动机为案例进行实例验证。分析结果表明:当正则化参数分别为25、37、28、40、27与35时,6台PW4000航空发动机的实际在翼寿命依次为6 921、7 160、7 820、8 490、8 498、6 921循环,对应的在翼寿命预测值依次为6 534、6 726、7 378、7 940、9 103、6 534循环,最大相对误差为0.071 190,最小相对误差为0.055 917,平均相对误差为0.060 824,可见,提出的方法可以很好地满足工程实际需要。 展开更多
关键词 航空发动机 在翼寿命 性能可靠性 时间序列 WEIBULL分布 最小二乘支持向量机
原文传递
贝叶斯证据框架下的LS-SVM多工况数控机床热误差建模 被引量:9
15
作者 余文利 姚鑫骅 +1 位作者 傅建中 孙磊 《中国机械工程》 EI CAS CSCD 北大核心 2014年第17期2361-2368,共8页
最小二乘支持向量机(LS-SVM)模型是表征数控机床热误差特性的有效工具,但该模型中的参数设置直接影响建模的精度。传统的基于交叉验证法或网格法的参数获取方法存在计算量大、精度低的缺点,且同一组模型常数往往不能准确表征机床多种工... 最小二乘支持向量机(LS-SVM)模型是表征数控机床热误差特性的有效工具,但该模型中的参数设置直接影响建模的精度。传统的基于交叉验证法或网格法的参数获取方法存在计算量大、精度低的缺点,且同一组模型常数往往不能准确表征机床多种工况条件下所产生的热误差。为解决这一问题,提出了一种基于贝叶斯证据框架理论的LS-SVM多工况参数优化方法。通过测量不同工况下数控机床温度值与主轴热变形量,采用贝叶斯证据框架的3个推断对LS-SVM模型进行训练并对参数进行辨识和优化,推导出了不同工况所对应的最优模型和参数。热误差建模实验验证了该参数优化方法的有效性,结果显示,经优化的模型具有泛化能力强、预测精度高、计算速度快的特点,能够较准确地描述多种典型工况条件下的实际热误差特性。 展开更多
关键词 贝叶斯证据框架 最小二乘支持向量机(ls-svm) 热误差建模 多工况 参数优化
在线阅读 下载PDF
基于LS-SVM的红外光谱技术在奶粉脂肪含量无损检测中的应用 被引量:37
16
作者 吴迪 何勇 +1 位作者 冯水娟 鲍一丹 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2008年第3期180-184,共5页
脂肪是奶粉中重要的组成部分,实现对奶粉中脂肪含量的快速、无损检测十分重要,为此研究了400-6666 cm^-1范围的红外光谱技术对不同品种奶粉的脂肪含量的无损检测.采用最小二乘支持向量机(LS-SVM)对光谱透射率值和脂肪含量值进行建模.... 脂肪是奶粉中重要的组成部分,实现对奶粉中脂肪含量的快速、无损检测十分重要,为此研究了400-6666 cm^-1范围的红外光谱技术对不同品种奶粉的脂肪含量的无损检测.采用最小二乘支持向量机(LS-SVM)对光谱透射率值和脂肪含量值进行建模.模型在全红外波段范围对样本脂肪含量预测得到了较好的结果,绝对系数(R2p)达到0.9796,预测误差均方根(RMSEP)为0.8367.预测结果要优于BP人工神经网络(Back Propagation NeuralNetworks,BP-NN).说明红外光谱技术能够实现奶粉脂肪含量的无损检测,检测过程比化学检测方法简单快速,操作性强.文章同时还研究了分别基于中红外光谱范围和近红外光谱范围的建模.模型预测结果显示分别基于中红外光谱和近红外光谱区域的模型预测效果都比全波段建模略差.本研究为今后奶粉脂肪含量快速无损检测仪器的开发奠定了理论基础. 展开更多
关键词 近红外/中红外光谱 最小二乘支持向量机 无损检测
在线阅读 下载PDF
基于LS-SVM的供水管网安全性评价方法研究 被引量:10
17
作者 王志涛 苏经宇 +1 位作者 王威 邢涛 《中国安全科学学报》 CAS CSCD 北大核心 2010年第11期119-123,共5页
为评价城市供水管网的安全性,保障其正常运行,笔者基于多元分类最小二乘支持向量机(LS-SVM)的方法,在对城市供水管网安全运行影响因素总结与分析的基础上,构建供水管网安全性评价的指标因素集与评价模型,通过对有限的经验数据的学习,建... 为评价城市供水管网的安全性,保障其正常运行,笔者基于多元分类最小二乘支持向量机(LS-SVM)的方法,在对城市供水管网安全运行影响因素总结与分析的基础上,构建供水管网安全性评价的指标因素集与评价模型,通过对有限的经验数据的学习,建立供水管网安全性与其影响因素之间的非线性关系。运用该模型进行实例仿真模拟,通过与实际安全等级及BP神经网络模型预测安全等级之间的对比表明:基于LS-SVM的供水管网安全性评价方法具有较高的精度,正确分类率可以达到83.33%。 展开更多
关键词 供水管网 供水安全 安全评价 最小二乘支持向量机(ls-svm) 人工神经网络(ANN)
原文传递
基于离散Fréchet距离和LS-SVM的短期负荷预测 被引量:15
18
作者 陈超 黄国勇 +2 位作者 范玉刚 吴建德 王晓东 《电力系统保护与控制》 EI CSCD 北大核心 2014年第5期142-147,共6页
针对现有电力系统短期负荷预测精度低、数据处理量大、易受输入变量的影响等问题,提出了一种将离散Fréchet距离与LS-SVM相结合的短期负荷预测方法。分析总结了East-Slovakia Power Distribution Company提供的历年负荷数据,结合该... 针对现有电力系统短期负荷预测精度低、数据处理量大、易受输入变量的影响等问题,提出了一种将离散Fréchet距离与LS-SVM相结合的短期负荷预测方法。分析总结了East-Slovakia Power Distribution Company提供的历年负荷数据,结合该地区的用电规律,通过引入离散Fréchet距离,建立离散曲线相似性的数学模型,选取出与基准曲线形状相似的相似日,利用相似日负荷数据对LS-SVM预测模型进行训练。经过仿真验证,并与标准LS-SVM模型得到的结果对比,所提预测方法明显提高了预测精度。 展开更多
关键词 离散Frechet距离 LS—SVM 用电规律 形状相似日 短期负荷预测
在线阅读 下载PDF
基于LS-SVM的电力电子电路故障预测方法 被引量:24
19
作者 姜媛媛 王友仁 +1 位作者 崔江 孙凤艳 《电机与控制学报》 EI CSCD 北大核心 2011年第8期64-68,74,共6页
针对现有电力电子电路故障预测技术的不足,提出将电路特征性能参数和最小二乘支持向量机(least squares support vector machine,LS-SVM)预测算法结合,对电力电子电路进行故障预测。以Buck电路为例,选择电路输出电压作为监测信号,提取... 针对现有电力电子电路故障预测技术的不足,提出将电路特征性能参数和最小二乘支持向量机(least squares support vector machine,LS-SVM)预测算法结合,对电力电子电路进行故障预测。以Buck电路为例,选择电路输出电压作为监测信号,提取输出电压平均值及纹波值作为电路特征性能参数,并利用LS-SVM回归算法实现故障预测。实验结果表明,利用LS-SVM对电路输出平均电压与输出纹波电压的预测相对误差均低于2%,能够跟踪故障特征性能参数的变化趋势,有效实现电力电子电路故障预测。 展开更多
关键词 电力电子电路 故障预测 特征性能参数 数据驱动 最小二乘支持向量机
在线阅读 下载PDF
基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略 被引量:25
20
作者 林伟青 傅建中 +1 位作者 许亚洲 陈子辰 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1682-1687,共6页
提出了一种在数控机床热误差辨识建模过程中利用最小二乘支持向量机结合遗传算法对温度传感器进行筛选与优化的新方法,对布置在一台数控车床上的温度传感器进行了优化。根据热模态理论,对传感器进行分组,利用最小二乘支持向量机方法构... 提出了一种在数控机床热误差辨识建模过程中利用最小二乘支持向量机结合遗传算法对温度传感器进行筛选与优化的新方法,对布置在一台数控车床上的温度传感器进行了优化。根据热模态理论,对传感器进行分组,利用最小二乘支持向量机方法构建数控机床热误差辨识模型,再根据遗传算法对其进行传感器优化布置。结果表明,遗传算法与最小二乘支持向量机方法的结合,很好地避免了温度测点的相互影响,保证了模型精度。该台数控车床的轴向建模平均绝对百分比误差为1.89%,径向建模平均绝对百分比误差为2.04%。传感器使用数量减少,节约了硬件成本,提高了辨识建模速度。 展开更多
关键词 数控机床 温度传感器 最小二乘支持向量机 遗传算法
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部