In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
电力系统的安全稳定运行是保障国家能源安全和经济发展的关键,而这在很大程度上依赖于对电力物联设备故障的准确预测。当前,随着电力物联网技术的发展,大量的数据被采集,但这些数据的潜在价值尚未得到充分挖掘,这在一定程度上限制了故...电力系统的安全稳定运行是保障国家能源安全和经济发展的关键,而这在很大程度上依赖于对电力物联设备故障的准确预测。当前,随着电力物联网技术的发展,大量的数据被采集,但这些数据的潜在价值尚未得到充分挖掘,这在一定程度上限制了故障预测的准确性,影响了电力系统的可靠运行。针对这一问题,该文提出了一种创新的基于GraphSAGE(Graph Sample and Aggregate)算法的电力物联设备故障预测。该方法通过PowerGraph数据集,将电力物联设备故障场景细分为四类,利用GraphSAGE模型的特性,深入学习和分析节点特征与边特征,从而实现对物联设备故障的有效预测。实验结果表明,该方法准确率达到97.5%,相较于其它传统方法,准确率提高了0.39%~6.21%,同时GraphSAGE模型实现了快速训练。该方法为电力物联设备安全稳定运行提供重要决策支持,能够对动态和相互联系的复杂系统进行更精细的分析,并增强电力系统运营部门对潜在干扰的预见和应对能力。展开更多
为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-b...为解决财务人员数字技术应用能力不足、传统财务流程中数据采集质量差导致重复返工、人工数据处理效率低等问题,设计开发了财务共享辅助系统。采用机器人流程自动化(RPA,Robotic Process Automation)和图检索增强生成(Graph RAG,Graph-based Retrieval-Augmented Generation)技术,实现数据填报收集、RPA自动化处理、智能问答等功能,显著提升财务报账效率,为铁路局集团公司财务共享中心的建设提供支撑。展开更多
With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precisio...With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.展开更多
The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document ...The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines.展开更多
In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V(G)to { 0,1,⋯,k−1 }where k is an integer, 1≤k≤| V(G) |. For each edge uvassign the label f(u)f(v)(modk). f is c...In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V(G)to { 0,1,⋯,k−1 }where k is an integer, 1≤k≤| V(G) |. For each edge uvassign the label f(u)f(v)(modk). f is called a k-product cordial labeling if | vf(i)−vf(j) |≤1, and | ef(i)−ef(j) |≤1, i,j∈{ 0,1,⋯,k−1 }, where vf(x)and ef(x)denote the number of vertices and edges respectively labeled with x (x=0,1,⋯,k−1). Motivated by this concept, we further studied and established that several families of graphs admit k-product cordial labeling. In this paper, we show that the path graphs Pnadmit k-product cordial labeling.展开更多
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep...Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.展开更多
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
文摘电力系统的安全稳定运行是保障国家能源安全和经济发展的关键,而这在很大程度上依赖于对电力物联设备故障的准确预测。当前,随着电力物联网技术的发展,大量的数据被采集,但这些数据的潜在价值尚未得到充分挖掘,这在一定程度上限制了故障预测的准确性,影响了电力系统的可靠运行。针对这一问题,该文提出了一种创新的基于GraphSAGE(Graph Sample and Aggregate)算法的电力物联设备故障预测。该方法通过PowerGraph数据集,将电力物联设备故障场景细分为四类,利用GraphSAGE模型的特性,深入学习和分析节点特征与边特征,从而实现对物联设备故障的有效预测。实验结果表明,该方法准确率达到97.5%,相较于其它传统方法,准确率提高了0.39%~6.21%,同时GraphSAGE模型实现了快速训练。该方法为电力物联设备安全稳定运行提供重要决策支持,能够对动态和相互联系的复杂系统进行更精细的分析,并增强电力系统运营部门对潜在干扰的预见和应对能力。
文摘With the continuous development of artificial intelligence and natural language processing technologies, traditional retrieval-augmented generation (RAG) techniques face numerous challenges in document answer precision and similarity measurement. This study, set against the backdrop of the shipping industry, combines top-down and bottom-up schema design strategies to achieve precise and flexible knowledge representation. The research adopts a semi-structured approach, innovatively constructing an adaptive schema generation mechanism based on reinforcement learning, which models the knowledge graph construction process as a Markov decision process. This method begins with general concepts, defining foundational industry concepts, and then delves into abstracting core concepts specific to the maritime domain through an adaptive pattern generation mechanism that dynamically adjusts the knowledge structure. Specifically, the study designs a four-layer knowledge construction framework, including the data layer, modeling layer, technology layer, and application layer. It draws on a mutual indexing strategy, integrating large language models and traditional information extraction techniques. By leveraging self-attention mechanisms and graph attention networks, it efficiently extracts semantic relationships. The introduction of logic-form-driven solvers and symbolic decomposition techniques for reasoning significantly enhances the model’s ability to understand complex semantic relationships. Additionally, the use of open information extraction and knowledge alignment techniques further improves the efficiency and accuracy of information retrieval. Experimental results demonstrate that the proposed method not only achieves significant performance improvements in knowledge graph retrieval within the shipping domain but also holds important theoretical innovation and practical application value.
文摘The cost and strict input format requirements of GraphRAG make it less efficient for processing large documents. This paper proposes an alternative approach for constructing a knowledge graph (KG) from a PDF document with a focus on simplicity and cost-effectiveness. The process involves splitting the document into chunks, extracting concepts within each chunk using a large language model (LLM), and building relationships based on the proximity of concepts in the same chunk. Unlike traditional named entity recognition (NER), which identifies entities like “Shanghai”, the proposed method identifies concepts, such as “Convenient transportation in Shanghai” which is found to be more meaningful for KG construction. Each edge in the KG represents a relationship between concepts occurring in the same text chunk. The process is computationally inexpensive, leveraging locally set up tools like Mistral 7B openorca instruct and Ollama for model inference, ensuring the entire graph generation process is cost-free. A method of assigning weights to relationships, grouping similar pairs, and summarizing multiple relationships into a single edge with associated weight and relation details is introduced. Additionally, node degrees and communities are calculated for node sizing and coloring. This approach offers a scalable, cost-effective solution for generating meaningful knowledge graphs from large documents, achieving results comparable to GraphRAG while maintaining accessibility for personal machines.
文摘In 2012, Ponraj et al. defined a concept of k-product cordial labeling as follows: Let f be a map from V(G)to { 0,1,⋯,k−1 }where k is an integer, 1≤k≤| V(G) |. For each edge uvassign the label f(u)f(v)(modk). f is called a k-product cordial labeling if | vf(i)−vf(j) |≤1, and | ef(i)−ef(j) |≤1, i,j∈{ 0,1,⋯,k−1 }, where vf(x)and ef(x)denote the number of vertices and edges respectively labeled with x (x=0,1,⋯,k−1). Motivated by this concept, we further studied and established that several families of graphs admit k-product cordial labeling. In this paper, we show that the path graphs Pnadmit k-product cordial labeling.
文摘Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.