We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)eq...We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.展开更多
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of ...By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.展开更多
Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By fur...Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.展开更多
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨...This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨ cklund transformation was first obtained, and then the richness of the localized coherent structures was found, which was caused by the entrance of two variable separated arbitrary functions, in the model. For some special choices of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, and ring solitons.展开更多
文摘We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.
基金The Project supported by the Natural Science Foundation of Shandong Province of China under Grant No.Q2005A01
文摘By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672147) and Natural Science Foundation of Zhejiang Forestry University, China (Grant No 2006FR035). Acknowledgments The authors are indebted to Professor Zhang J F for his helpful suggestions and fruitful discussions, and also express their sincere thanks to the editors and the anonymous referees for their constructive suggestions and kind help.
文摘Starting from the extended tanh-function method (ETM) based on the mapping method, the variable separation solutions of the (2+1)-dimensional asymmetric Nizhnik Novikov Veselov (ANNV) system are derived. By further study, we find that these variable separation solutions are seemingly independent of but actually dependent on each other. Based on the variable separation solution and by choosing appropriate functions, some novel and interesting interactions between special solitons, such as bell-like compacton, peakon-like compacton and compacton-like semifoldon, are investigated.
文摘This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structure of the (2+1) dimensional asymmetric Nizhnik Novikov Veselov equation. A B a¨ cklund transformation was first obtained, and then the richness of the localized coherent structures was found, which was caused by the entrance of two variable separated arbitrary functions, in the model. For some special choices of the arbitrary functions, it is shown that the localized structures of the model may be dromions, lumps, and ring solitons.