A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed ...A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.展开更多
Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by...Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.展开更多
采用草酸盐共沉淀法制备了一系列(x=0.1、0.2、0.3、0.4、0.5)异质结构的尖晶石/层状复合正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。借助X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电...采用草酸盐共沉淀法制备了一系列(x=0.1、0.2、0.3、0.4、0.5)异质结构的尖晶石/层状复合正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。借助X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了系统研究。结果表明,x=0.2的材料具有最佳的高倍率性能和长循环稳定性。在2.7~4.5 V,1C下循环100次后(1 C=180 m A?g^(-1)),放电比容量为144 m Ah?g-1,容量保持率为92%;在10 C时的放电比容量仍能达到126 m Ah?g^(-1),相比于原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料的放电比容量(73 m Ah?g^(-1))有较大提高。此外,该材料的储能能力也非常突出,在0.1和10 C时的比能量密度分别为733.44和437.21 W×h?kg^(-1)。展开更多
基金the state assignment on the topic“Interdisciplinary approaches to the creation and study of micro-/nanostructured systems”(No.125012200595-8)Conductivity measurements of the samples were performed in accordance with the state task for FRC PCP and MC RAS(No.124013000692-4).
文摘A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O.
文摘Nanometer micro-porous Nix Zn (1-x )Fe2O4power was synthesized by hydrotherm al method.This is first time to apply template to the synthesis.The structure,characteristics and cry stal appearance are studied further by XRD,DSC,TEM,etc.It is found that nanome ter micro-porous crystal is well-crystallized,well-degree of dispers ion and smaller than 100nm in diameter.More over,tri-ethylamine can be used to b e a ideal template in this synthesis,and the first time it is reported in our co untry.The synthesis mechanism is also preliminary discussed in this pap er.
文摘采用草酸盐共沉淀法制备了一系列(x=0.1、0.2、0.3、0.4、0.5)异质结构的尖晶石/层状复合正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。借助X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了系统研究。结果表明,x=0.2的材料具有最佳的高倍率性能和长循环稳定性。在2.7~4.5 V,1C下循环100次后(1 C=180 m A?g^(-1)),放电比容量为144 m Ah?g-1,容量保持率为92%;在10 C时的放电比容量仍能达到126 m Ah?g^(-1),相比于原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料的放电比容量(73 m Ah?g^(-1))有较大提高。此外,该材料的储能能力也非常突出,在0.1和10 C时的比能量密度分别为733.44和437.21 W×h?kg^(-1)。