In this paper,the density-independent fractional diffusion-reaction(FDR)equation involving quadratic nonlinearity is investigated.The fractional derivative is illustrated in the beta derivative sense.We firstly propos...In this paper,the density-independent fractional diffusion-reaction(FDR)equation involving quadratic nonlinearity is investigated.The fractional derivative is illustrated in the beta derivative sense.We firstly propose Bernoulli(G'/G)-expansion method to study nonlinear fractional differential equations(NFDEs).Subsequently,closed form solutions of the density-independent FDR equation are acquired successfully.In order to better understand the dynamic behaviors of these solutions,3D,contour map and line plots are given by the computer simulation.The results show that the proposed method is a reliable and efficient approach.展开更多
基金Supported by the National Natural Science Foundation of China(11901111)Guangzhou Science and Technology Plan Project(202201011602)。
文摘In this paper,the density-independent fractional diffusion-reaction(FDR)equation involving quadratic nonlinearity is investigated.The fractional derivative is illustrated in the beta derivative sense.We firstly propose Bernoulli(G'/G)-expansion method to study nonlinear fractional differential equations(NFDEs).Subsequently,closed form solutions of the density-independent FDR equation are acquired successfully.In order to better understand the dynamic behaviors of these solutions,3D,contour map and line plots are given by the computer simulation.The results show that the proposed method is a reliable and efficient approach.