To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common r...To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common reservoir.First,some operation modes of mPSS are analyzed,which include the separated reservoir mode(SRM)and common reservoir mode(CRM).Then,based on the SRM,and CRM,an energy mutual assistance control model between LVSs has been built to optimize energy loss.Finally,in the simulation,compared to the model without pumped storage in the LVS,the SRMand CLRMcan decrease the total energy loss by 294.377 and 432.578 kWh,respectively.The configuration of mPSS can improve the utilization rate of the new energy source generation system,and relieve the pressure of transformer capacity in the LVS.Compared with the SRM,the proposed CRM has reduced the total energy loss by 138.201 kWh,increased the new energy consumption by 161.642 kWh,and decreased the line loss by 7.271 kWh.With the efficiency of the mPSS improving,the total energy loss reduction of CRM will be 3.5 times that of SRM.Further,the CRMcan significantly reduce the reservoir capacity construction of mPSS and ismore suitable for scenarios where the capacity configuration of mPSS is limited.展开更多
An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed o...An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed operator adheres to the physics essence of fiber analysis.The training of the mode-solving operator adopts a hybrid physics-informed and data-driven approach,providing the advantages of strong physical consistency,enhanced prediction accuracy,and reduced data dependency in comparison with purely datadriven methods.Benefiting from the improvements in network input-output mapping formulation,the proposed operator offers broader applicability to different fiber types and greater flexibility for property optimization.Combined with the particle swarm optimization and refractive index optimization,the operator demonstrates its capacity for the inverse design of multi-step-index fibers(MSIFs)and graded-index fibers(GRIFs).For MSIFs,to ensure a low mode crosstalk for short-distance transmission systems,optimized refractive index profiles(RIPs)of both three-ring and four-ring structures are obtained from large structure parameter search spaces.For GRIFs,to ensure a low receiving complexity for long-haul transmission systems,optimized RIP with low root mean square mode group delay is obtained through point-wise fine-tuning.Moreover,the operator is capable of analyzing the effect of dopant diffusion in manufacturing.展开更多
The Healthcare Failure Mode and Effect Analysis(HFMEA)model,as a proactive risk assessment tool,systematically identifies potential infection risk points during surgical procedures and evaluates the failure modes and ...The Healthcare Failure Mode and Effect Analysis(HFMEA)model,as a proactive risk assessment tool,systematically identifies potential infection risk points during surgical procedures and evaluates the failure modes and their effects that may result from these risks.Evidence-based medicine,on the other hand,emphasizes making medical decisions based on the best available evidence.Combining these two approaches can provide more scientific and effective strategies for preventing infection in operating rooms.This paper delves into the application of the HFMEA model and evidence-based medicine in the field of infection prevention in operating rooms,aiming to offer new perspectives and methods for this critical aspect of healthcare.展开更多
In the context of the rapid advancement of intelligent manufacturing,ensuring the alignment of the skill levels of embedded system developers with industry requirements has emerged as a crucial aspect in the reform of...In the context of the rapid advancement of intelligent manufacturing,ensuring the alignment of the skill levels of embedded system developers with industry requirements has emerged as a crucial aspect in the reform of vocational education.This research delves into a three-stage progressive talent cultivation model denoted as“Cultivation–Growth–Incubation”,which is founded on the Shi Zhenjiang(Z.S.)Intelligent Embedded System Development Master Skills Studio.By means of hierarchical training,project-driven strategies,and industry-academia cooperation,this model effectively elevates students’application capabilities and innovative competencies in embedded systems.Case analyses illustrate the practical efficacy of the model,providing valuable references for the establishment of master skills studios in vocational education.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is t...Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is to build high-performance modules interconnected via strong coupling. In particular, axial motional modes offer a practical mechanism to couple the ions in a chain, enabling the preparation of Greenberger–Horne–Zeilinger states with up to 24 ions using global operations, as well as high-fidelity two-qubit gates(96.6%–98.0%) in fully connected five-ion chains. Here, we demonstrate two-qubit quantum logic gates in a 5-ion^(40)Ca^(+)chain using axial modes, achieving fidelities exceeding 99% for adjacent pairs and over 98% for arbitrary pairs by carefully tackling dominant error sources. Our results are beneficial to the development of scalable ion-trap quantum processors,quantum simulation and quantum-enhanced metrology.展开更多
With the gradually popularization of replacing coal tobacco leaf flue-curing technology with biomass fuel, the operation of raw materials collection and transportation links faces many problems. In this paper, the exi...With the gradually popularization of replacing coal tobacco leaf flue-curing technology with biomass fuel, the operation of raw materials collection and transportation links faces many problems. In this paper, the existing problems in view of biomass fuel operation dominated by tobacco straw in current tobacco leaf flue-curing were analyzed, and the 3 kinds of fuel operation modes ("contracting processing mode, displacement mode and commercialization mode") were put forward, each of which was also briefly analyzed, with the aim to expand the way of thinking about biomass raw materials processing by cooperative organization.展开更多
针对花卉温室中地源热泵系统土壤热失衡导致的热泵机组制热性能逐年下降的问题,提出了一种地埋管分区跨季节蓄热的光伏光热耦合地源热泵(photovoltaic/thermal-ground source heat pump,PV/T-GSHP)系统,通过20 a的仿真模拟,对无蓄热、...针对花卉温室中地源热泵系统土壤热失衡导致的热泵机组制热性能逐年下降的问题,提出了一种地埋管分区跨季节蓄热的光伏光热耦合地源热泵(photovoltaic/thermal-ground source heat pump,PV/T-GSHP)系统,通过20 a的仿真模拟,对无蓄热、全年全区蓄热与各跨季分区蓄热模式的运行特性进行了深入研究。研究结果表明:跨季分区蓄热模式通过对土壤温度的提升,实现了热泵机组制热性能系数(coefficient of performance for heating,COP_(h))、年均热泵机组性能系数(mean annual coefficient of performance,COP_(m))与年均系统性能系数(mean annual coefficient of performance of the system,COP_(msys))较全年全区蓄热模式的进一步提高,计算得到的COP_(h)、COP_(m)与COP_(msys)平均增幅分别为3.9%、3.0%与7.1%;最佳蓄热模式的COP_(m)与COP_(msys)较无蓄热模式分别提高了7.7%和50.1%,COP_(msys)与太阳能保证率较全年全区蓄热模式分别提高了9.2%和7.8%,消耗的燃煤量较全年全区蓄热模式降低了6.8%。该研究可为花卉温室中PV/T-GSHP系统的高效节能运行提供借鉴。展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control...This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control input. The ATSMC structure is designed by considering the nonlinear characteristics of the dynamic model and the parametric uncertainties of the train operation in real time. A nonsingular terminal sliding mode control is employed to make the system quickly reach a stable state within a finite time, which makes the control input less adjust to guarantee the riding comfort. An adaptive mechanism is used to estimate controller parameters to get rid of the need of the prior knowledge about the bounds of system uncertainty. Simulations are presented to demonstrate the effectiveness of the proposed controller, which has robust performance to deal with the external disturbance and system parametric uncertainties. Thereby, the system guarantees the train operation to be accurate and comfortable.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components of...The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.展开更多
基金sponsored by the State Grid Corporation of China Technology Project(Research on Key Technologies and Equipment Development of Micro Pumped Storage for Distributed New Energy Consumption in Distribution Networks,5400-202324196A-1-1-ZN).
文摘To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common reservoir.First,some operation modes of mPSS are analyzed,which include the separated reservoir mode(SRM)and common reservoir mode(CRM).Then,based on the SRM,and CRM,an energy mutual assistance control model between LVSs has been built to optimize energy loss.Finally,in the simulation,compared to the model without pumped storage in the LVS,the SRMand CLRMcan decrease the total energy loss by 294.377 and 432.578 kWh,respectively.The configuration of mPSS can improve the utilization rate of the new energy source generation system,and relieve the pressure of transformer capacity in the LVS.Compared with the SRM,the proposed CRM has reduced the total energy loss by 138.201 kWh,increased the new energy consumption by 161.642 kWh,and decreased the line loss by 7.271 kWh.With the efficiency of the mPSS improving,the total energy loss reduction of CRM will be 3.5 times that of SRM.Further,the CRMcan significantly reduce the reservoir capacity construction of mPSS and ismore suitable for scenarios where the capacity configuration of mPSS is limited.
基金supported by the National Natural Science Foundation of China(Grant Nos.U24B20133 and 62522104)the Beijing Nova Program(Grant No.20230484331).
文摘An efficient neural mode-solving operator is proposed for evaluating the propagation properties of optical fibers.By incorporating the governing Helmholtz equation into training,the working mechanism of the proposed operator adheres to the physics essence of fiber analysis.The training of the mode-solving operator adopts a hybrid physics-informed and data-driven approach,providing the advantages of strong physical consistency,enhanced prediction accuracy,and reduced data dependency in comparison with purely datadriven methods.Benefiting from the improvements in network input-output mapping formulation,the proposed operator offers broader applicability to different fiber types and greater flexibility for property optimization.Combined with the particle swarm optimization and refractive index optimization,the operator demonstrates its capacity for the inverse design of multi-step-index fibers(MSIFs)and graded-index fibers(GRIFs).For MSIFs,to ensure a low mode crosstalk for short-distance transmission systems,optimized refractive index profiles(RIPs)of both three-ring and four-ring structures are obtained from large structure parameter search spaces.For GRIFs,to ensure a low receiving complexity for long-haul transmission systems,optimized RIP with low root mean square mode group delay is obtained through point-wise fine-tuning.Moreover,the operator is capable of analyzing the effect of dopant diffusion in manufacturing.
文摘The Healthcare Failure Mode and Effect Analysis(HFMEA)model,as a proactive risk assessment tool,systematically identifies potential infection risk points during surgical procedures and evaluates the failure modes and their effects that may result from these risks.Evidence-based medicine,on the other hand,emphasizes making medical decisions based on the best available evidence.Combining these two approaches can provide more scientific and effective strategies for preventing infection in operating rooms.This paper delves into the application of the HFMEA model and evidence-based medicine in the field of infection prevention in operating rooms,aiming to offer new perspectives and methods for this critical aspect of healthcare.
基金The 2025 Guangdong Polytechnic College Innovation-driven School Strengthening Project“Construction of Shi Zhenjiang’s Master Studio for Intelligent Embedded System Development Skills”(Project No.:2025CQ06-05)。
文摘In the context of the rapid advancement of intelligent manufacturing,ensuring the alignment of the skill levels of embedded system developers with industry requirements has emerged as a crucial aspect in the reform of vocational education.This research delves into a three-stage progressive talent cultivation model denoted as“Cultivation–Growth–Incubation”,which is founded on the Shi Zhenjiang(Z.S.)Intelligent Embedded System Development Master Skills Studio.By means of hierarchical training,project-driven strategies,and industry-academia cooperation,this model effectively elevates students’application capabilities and innovative competencies in embedded systems.Case analyses illustrate the practical efficacy of the model,providing valuable references for the establishment of master skills studios in vocational education.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金supported by the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301603)the National Natural Science Foundation of China (Grant No.92165206)。
文摘Trapped-ion systems are one of the leading platforms for quantum information processing, where a key challenge is to scale up system size while maintaining high-fidelity two-qubit operations. A promising approach is to build high-performance modules interconnected via strong coupling. In particular, axial motional modes offer a practical mechanism to couple the ions in a chain, enabling the preparation of Greenberger–Horne–Zeilinger states with up to 24 ions using global operations, as well as high-fidelity two-qubit gates(96.6%–98.0%) in fully connected five-ion chains. Here, we demonstrate two-qubit quantum logic gates in a 5-ion^(40)Ca^(+)chain using axial modes, achieving fidelities exceeding 99% for adjacent pairs and over 98% for arbitrary pairs by carefully tackling dominant error sources. Our results are beneficial to the development of scalable ion-trap quantum processors,quantum simulation and quantum-enhanced metrology.
基金Supported by the Science and Technology Project of Yunnan Tobacco Co.,Ltd.(2016YN01)~~
文摘With the gradually popularization of replacing coal tobacco leaf flue-curing technology with biomass fuel, the operation of raw materials collection and transportation links faces many problems. In this paper, the existing problems in view of biomass fuel operation dominated by tobacco straw in current tobacco leaf flue-curing were analyzed, and the 3 kinds of fuel operation modes ("contracting processing mode, displacement mode and commercialization mode") were put forward, each of which was also briefly analyzed, with the aim to expand the way of thinking about biomass raw materials processing by cooperative organization.
文摘针对花卉温室中地源热泵系统土壤热失衡导致的热泵机组制热性能逐年下降的问题,提出了一种地埋管分区跨季节蓄热的光伏光热耦合地源热泵(photovoltaic/thermal-ground source heat pump,PV/T-GSHP)系统,通过20 a的仿真模拟,对无蓄热、全年全区蓄热与各跨季分区蓄热模式的运行特性进行了深入研究。研究结果表明:跨季分区蓄热模式通过对土壤温度的提升,实现了热泵机组制热性能系数(coefficient of performance for heating,COP_(h))、年均热泵机组性能系数(mean annual coefficient of performance,COP_(m))与年均系统性能系数(mean annual coefficient of performance of the system,COP_(msys))较全年全区蓄热模式的进一步提高,计算得到的COP_(h)、COP_(m)与COP_(msys)平均增幅分别为3.9%、3.0%与7.1%;最佳蓄热模式的COP_(m)与COP_(msys)较无蓄热模式分别提高了7.7%和50.1%,COP_(msys)与太阳能保证率较全年全区蓄热模式分别提高了9.2%和7.8%,消耗的燃煤量较全年全区蓄热模式降低了6.8%。该研究可为花卉温室中PV/T-GSHP系统的高效节能运行提供借鉴。
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金supported by National Natural Science Foundation of China and High Speed Railway Union Foundation of China(No.U11344205)
文摘This paper presents an adaptive terminal sliding mode control(ATSMC) method for automatic train operation. The criterion for the design is keeping high-precision tracking with relatively less adjustment of the control input. The ATSMC structure is designed by considering the nonlinear characteristics of the dynamic model and the parametric uncertainties of the train operation in real time. A nonsingular terminal sliding mode control is employed to make the system quickly reach a stable state within a finite time, which makes the control input less adjust to guarantee the riding comfort. An adaptive mechanism is used to estimate controller parameters to get rid of the need of the prior knowledge about the bounds of system uncertainty. Simulations are presented to demonstrate the effectiveness of the proposed controller, which has robust performance to deal with the external disturbance and system parametric uncertainties. Thereby, the system guarantees the train operation to be accurate and comfortable.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.
基金supported by the Natural Science Foundation of Shannxi Province(2017JQ5016)the Joint Laboratory for Sea Measurement and Control of Aircraft(DOM2016OF011)
文摘The complex systems are often in the structure of multi-operating modes, and the components implementing system functions are different under different operation modes, which results in the problems that components often fail in different operating modes, faults can be only detected in specified operating modes, tests can be available in specified operating modes,and the cost and efficiency of detecting and isolating faults are different under different operating modes and isolation levels. Aiming at these problems, an optimal test selection method for fault detection and isolation in the multi-operating mode system is proposed by using the fault pair coding and rollout algorithm. Firstly,the faults in fault-test correlation matrices under different operating modes are combined to fault-pairs, which is used to construct the fault pair-test correlation matrices under different operating modes.Secondly, the final fault pair-test correlation matrix of the multioperating mode system is obtained by operating the fault pair-test correlation matrices under different operating modes. Based on the final fault pair-test correlation matrix, the necessary tests are selected by the rollout algorithm orderly. Finally, the effectiveness of the proposed method is verified by examples of the optimal test selection in the multi-operating mode system with faults isolated to different levels. The result shows that the proposed method can effectively mine the fault detection and isolation ability of tests and it is suitable for the optimal test selection of the multi-operating mode system with faults isolated to the replacement unit and specific fault.