期刊文献+
共找到324篇文章
< 1 2 17 >
每页显示 20 50 100
GCN-LSTM spatiotemporal-network-based method for post-disturbance frequency prediction of power systems 被引量:4
1
作者 Dengyi Huang Hao Liu +1 位作者 Tianshu Bi Qixun Yang 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期96-107,共12页
Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly importa... Owing to the expansion of the grid interconnection scale,the spatiotemporal distribution characteristics of the frequency response of power systems after the occurrence of disturbances have become increasingly important.These characteristics can provide effective support in coordinated security control.However,traditional model-based frequencyprediction methods cannot satisfactorily meet the requirements of online applications owing to the long calculation time and accurate power-system models.Therefore,this study presents a rolling frequency-prediction model based on a graph convolutional network(GCN)and a long short-term memory(LSTM)spatiotemporal network and named as STGCN-LSTM.In the proposed method,the measurement data from phasor measurement units after the occurrence of disturbances are used to construct the spatiotemporal input.An improved GCN embedded with topology information is used to extract the spatial features,while the LSTM network is used to extract the temporal features.The spatiotemporal-network-regression model is further trained,and asynchronous-frequency-sequence prediction is realized by utilizing the rolling update of measurement information.The proposed spatiotemporal-network-based prediction model can achieve accurate frequency prediction by considering the spatiotemporal distribution characteristics of the frequency response.The noise immunity and robustness of the proposed method are verified on the IEEE 39-bus and IEEE 118-bus systems. 展开更多
关键词 Synchronous phasor measurement Frequency-response prediction spatiotemporal distribution characteristics Improved graph convolutional network Long short-term memory network spatiotemporal-network structure
在线阅读 下载PDF
A Nonlinear Spatiotemporal Optimization Method of Hypergraph Convolution Networks for Traffic Prediction
2
作者 Difeng Zhu Zhimou Zhu +3 位作者 Xuan Gong Demao Ye Chao Li Jingjing Chen 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3083-3100,共18页
Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement o... Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively. 展开更多
关键词 Intelligent transportation systems traffic prediction hypergraph convolution networks spatiotemporal optimization
在线阅读 下载PDF
Prediction of Spatiotemporal Evolution of Urban Traffic Emissions Based on Taxi Trajectories 被引量:1
3
作者 Zhen-Yi Zhao Yang Cao +1 位作者 Yu Kang Zhen-Yi Xu 《International Journal of Automation and computing》 EI CSCD 2021年第2期219-232,共14页
With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays... With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions. 展开更多
关键词 Vehicle emission prediction spatiotemporal gragh convolution GPS trajectories motor vehicle emission simulator(MOVES)model feature sharing
原文传递
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
4
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 Bayesian neural networks(BNNs) convolution neural networks(CNN) Bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
MSSTGCN: Multi-Head Self-Attention and Spatial-Temporal Graph Convolutional Network for Multi-Scale Traffic Flow Prediction
5
作者 Xinlu Zong Fan Yu +1 位作者 Zhen Chen Xue Xia 《Computers, Materials & Continua》 2025年第2期3517-3537,共21页
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ... Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks. 展开更多
关键词 Graph convolutional network traffic flow prediction multi-scale traffic flow spatial-temporal model
在线阅读 下载PDF
Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-attention models in Yutian Oasis,southern Xinjiang,China
6
作者 Xiaobo LÜ Ilyas NURMEMET +4 位作者 Sentian XIAO Jing ZHAO Xinru YU Yilizhati AILI Shiqin LI 《Pedosphere》 2025年第5期846-857,共12页
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables... Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone. 展开更多
关键词 arid region convolutional neural network deep learning method hybrid prediction model leaf area index long short-term memory neural network normalized difference vegetation index physical model surface soil moisture
原文传递
Traffic flow prediction for highways based on a multi-task spatiotemporal graph network
7
作者 Jinyong Gao Sheng Luo +2 位作者 Junshan Tian Cheng Zhou Lianhua An 《Transportation Safety and Environment》 2025年第1期114-121,共8页
Efficient and precise traffic flow prediction is highly important in effective traffic management.This research presents a novel prediction model that integrates highway spatial changes and flow-related information(sp... Efficient and precise traffic flow prediction is highly important in effective traffic management.This research presents a novel prediction model that integrates highway spatial changes and flow-related information(speed and vehicle composition).The highway is divided into segments,using key reference points like tunnels,toll stations and ramps.An adaptive graph convolutional network is employed to capture relationships between these segments.The network automatically adjusts adjacency matrix weights,facilitating the extraction of spatial flow features.Incorporating flow-related information,a multi-task module attention fusion network is introduced.The main task is traffic flow prediction,with average travel speed and vehicle composition as auxiliary tasks.This approach enhances feature acquisition and improves prediction accuracy.In experiments using Fuzhou–Jingtan Expressway data,the model significantly enhances prediction accuracy by at least 55%.Ablation experiments validate the effectiveness of the designed modules,improving the model’s accuracy from 20%to 45%. 展开更多
关键词 traffic flow prediction convolutional neural networks(CNNs) spatiotemporal graph attention mechanism
在线阅读 下载PDF
Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction 被引量:6
8
作者 Jihua Ye Shengjun Xue Aiwen Jiang 《Digital Communications and Networks》 SCIE CSCD 2022年第3期343-350,共8页
Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network... Traffic flow prediction is an important part of the intelligent transportation system. Accurate multi-step traffic flow prediction plays an important role in improving the operational efficiency of the traffic network. Since traffic flow data has complex spatio-temporal correlation and non-linearity, existing prediction methods are mainly accomplished through a combination of a Graph Convolutional Network (GCN) and a recurrent neural network. The combination strategy has an excellent performance in traffic prediction tasks. However, multi-step prediction error accumulates with the predicted step size. Some scholars use multiple sampling sequences to achieve more accurate prediction results. But it requires high hardware conditions and multiplied training time. Considering the spatiotemporal correlation of traffic flow and influence of external factors, we propose an Attention Based Spatio-Temporal Graph Convolutional Network considering External Factors (ABSTGCN-EF) for multi-step traffic flow prediction. This model models the traffic flow as diffusion on a digraph and extracts the spatial characteristics of traffic flow through GCN. We add meaningful time-slots attention to the encoder-decoder to form an Attention Encoder Network (AEN) to handle temporal correlation. The attention vector is used as a competitive choice to draw the correlation between predicted states and historical states. We considered the impact of three external factors (daytime, weekdays, and traffic accident markers) on the traffic flow prediction tasks. Experiments on two public data sets show that it makes sense to consider external factors. The prediction performance of our ABSTGCN-EF model achieves 7.2%–8.7% higher than the state-of-the-art baselines. 展开更多
关键词 Multi-step traffic flow prediction Graph convolutional network External factors Attentional encoder network spatiotemporal correlation
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction 被引量:2
9
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling Multiscale prediction Data decomposition Convolution neural network
原文传递
Air Pollution Prediction Via Graph Attention Network and Gated Recurrent Unit 被引量:1
10
作者 Shun Wang Lin Qiao +3 位作者 Wei Fang Guodong Jing Victor S.Sheng Yong Zhang 《Computers, Materials & Continua》 SCIE EI 2022年第10期673-687,共15页
PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants ... PM2.5 concentration prediction is of great significance to environmental protection and human health.Achieving accurate prediction of PM2.5 concentration has become an important research task.However,PM2.5 pollutants can spread in the earth’s atmosphere,causing mutual influence between different cities.To effectively capture the air pollution relationship between cities,this paper proposes a novel spatiotemporal model combining graph attention neural network(GAT)and gated recurrent unit(GRU),named GAT-GRU for PM2.5 concentration prediction.Specifically,GAT is used to learn the spatial dependence of PM2.5 concentration data in different cities,and GRU is to extract the temporal dependence of the long-term data series.The proposed model integrates the learned spatio-temporal dependencies to capture long-term complex spatio-temporal features.Considering that air pollution is related to the meteorological conditions of the city,the knowledge acquired from meteorological data is used in the model to enhance PM2.5 prediction performance.The input of the GAT-GRU model consists of PM2.5 concentration data and meteorological data.In order to verify the effectiveness of the proposed GAT-GRU prediction model,this paper designs experiments on real-world datasets compared with other baselines.Experimental results prove that our model achieves excellent performance in PM2.5 concentration prediction. 展开更多
关键词 Air pollution prediction deep learning spatiotemporal data modeling graph attention network
在线阅读 下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
11
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
在线阅读 下载PDF
Ultra-short-term Photovoltaic Power Prediction Based on Improved Temporal Convolutional Network and Feature Modeling
12
作者 Hao Xiao Wanting Zheng +1 位作者 Hai Zhou Wei Pei 《CSEE Journal of Power and Energy Systems》 2025年第5期2024-2035,共12页
Accurate ultra-short-term photovoltaic(PV)power forecasting is crucial for mitigating variations caused by PV power generation and ensuring the stable and efficient operation of power grids.To capture intricate tempor... Accurate ultra-short-term photovoltaic(PV)power forecasting is crucial for mitigating variations caused by PV power generation and ensuring the stable and efficient operation of power grids.To capture intricate temporal relationships and enhance the precision of multi-step time forecast,this paper introduces an innovative approach for ultra-short-term photovoltaic(PV)power prediction,leveraging an enhanced Temporal Convolutional Neural Network(TCN)architecture and feature modeling.First,this study introduces a method employing the Spearman coefficient for meteorological feature filtration.Integrated with three-dimensional PV panel modeling,key factors influencing PV power generation are identified and prioritized.Second,the analysis of the correlation coefficient between astronomical features and PV power prediction demonstrates the theoretical substantiation for the practicality and essentiality of incorporating astronomical features.Third,an enhanced TCN model is introduced,augmenting the original TCN structure with a projection head layer to enhance its capacity for learning and expressing nonlinear features.Meanwhile,a new rolling timing network mechanism is constructed to guarantee the segmentation prediction of future long-time output sequences.Multiple experiments demonstrate the superior performance of the proposed forecasting method compared to existing models.The accuracy of PV power prediction in the next 4 hours,devoid of meteorological conditions,increases by 20.5%.Furthermore,incorporating shortwave radiation for predictions over 4 hours,2 hours,and 1 hour enhances accuracy by 11.1%,9.1%,and 8.8%,respectively. 展开更多
关键词 Astronomical feature feature modeling improved temporal convolutional neural network solar power generation ultra-short-term power generation prediction
原文传递
基于HDNNF-CAF的短时交通流预测研究 被引量:1
13
作者 王庆荣 慕壮壮 +1 位作者 朱昌锋 何润田 《计算机工程与应用》 北大核心 2025年第15期318-328,共11页
短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou... 短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。 展开更多
关键词 短时交通流 预测 深度学习 图卷积网络 时空信息
在线阅读 下载PDF
基于蜉蝣优化算法的时空融合交通流预测研究 被引量:1
14
作者 张红 巩蕾 +1 位作者 曹洁 张玺君 《哈尔滨工程大学学报》 北大核心 2025年第4期764-771,796,共9页
针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性... 针对复杂交通流的动态时空特性难以精准建模、现有深度学习模型超参数难以确定而导致模型预测精度低的问题,本文提出基于蜉蝣优化算法的门控时空卷积网络交通流预测方法。利用时间卷积网络结合门控线性单元挖掘交通数据隐藏的时间依赖性,通过门控机制融合ChebNet捕获的静态空间特征与图卷积网络结合注意力机制捕获的动态空间特征,构建考虑动态时空特征的预测模型,并借助蜉蝣优化算法优化超参数。研究表明:在PeMSD7(M)数据集上,15、30和45 min下该模型MAE的预测精度较T-GCN提高了5.91%、9.06%和10.72%,本文方法具有有效性与优越性。 展开更多
关键词 交通流预测 动态时空特性 超参数 蜉蝣优化算法 时间卷积网络 门控线性单元 注意力机制 图卷积网络
在线阅读 下载PDF
基于Vague软集的海上风电功率区间预测 被引量:3
15
作者 田书欣 朱峰 +2 位作者 杨喜军 符杨 苏向敬 《中国电机工程学报》 北大核心 2025年第4期1465-1476,I0019,共13页
海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真... 海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真隶属度和伪隶属度函数的交错式海上风电功率区间划分方法,实现风电功率数据Vague软区间化。其次,建立基于Vague-卷积神经网络(convolutional neural network,CNN)-长短期记忆神经网络(long short-term memory neural network,LSTM)的海上风电功率组合预测模型。通过类Vague软区间转换方法将双隶属度区间概率向量转化为海上风电功率复杂不确定信息下的区间预测结果。然后,从预测准确性、清晰性和兼顾性角度建立预测区间覆盖精度、预测区间宽度和预测综合水平等Vague软区间预测评估指标。最后,以我国东部某海上风电机组实际数据为算例进行验证。结果表明,所提预测模型预测结果可以兼顾预测区间的覆盖精度和清晰度,能够为海上风电不同工况下运行需求提供支撑。 展开更多
关键词 海上风电 Vague-卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型 Vague软集 软区间转换 区间预测
原文传递
特殊路网拓扑解构下的时空异质化交通流预测 被引量:1
16
作者 侯越 张鑫 +2 位作者 袭著涛 王甜甜 马宝君 《铁道科学与工程学报》 北大核心 2025年第7期2932-2945,共14页
在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现... 在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现有研究大多将路网作为整体进行建模,忽略了局部特殊路网的影响。鉴于此,为解决现有研究中Y形、环形路网影响考虑不充分及各类路网节点空间关联关系存在时变问题,提出特殊路网拓扑解构下的时空异质化交通流预测模型,该模型利用时滞影响下的动态图生成模块,构建反映当前时间步路网空间关联关系的图结构。在此基础上,利用特殊路网解构及动态映射模块,分离出Y形、环形路网时序特征及其时滞动态图。继而利用特殊路网影响下的空间特征提取模块,对整体路网、Y形、环形路网独立建模。实验基于公开高速路网数据集,研究结果表明,与当前先进的模型相比,所提模型的E_(mae)、E_(rmse)在PEMSD4、PEMSD8、成都-滴滴数据集上性能分别提升了4.9074%、4.3404%、3.2295%、0.1667%、1.2677%、1.1861%。同时相较于将路网视为整体进行建模,所提模型的E_(mae)、E_(rmse)在PEMSD8数据集上性能分别提升了8.6514%、6.5366%,进一步证明考虑局部特殊路网的有效性。综上所述,所提模型能充分考虑局部特殊路网对整体交通路网的影响,为时空异质化交通流预测提供一种新的思路。 展开更多
关键词 交通流预测 图卷积网络 门控循环单元 特殊路网 时空异质性
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
17
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于改进的时空卷积神经网络的脑电情绪识别
18
作者 朱琳 高瞻 +1 位作者 邵叶秦 王华容 《计算机应用与软件》 北大核心 2025年第11期207-214,220,共9页
为了提高机器端到端识别情绪的能力,提出一种改进的时空卷积神经网络ESTNet,其主要由四个模块组成:核注意力、空间学习、时间学习和融合。根据脑电信号的采样频率设计核的大小,并在时空模块利用可并行计算的Transformer模型和图神经网... 为了提高机器端到端识别情绪的能力,提出一种改进的时空卷积神经网络ESTNet,其主要由四个模块组成:核注意力、空间学习、时间学习和融合。根据脑电信号的采样频率设计核的大小,并在时空模块利用可并行计算的Transformer模型和图神经网络对脑电信号的时间域和空间域解码,并利用卷积神经网络融合时空特征。在DEAP数据集上的实验结果表明,在Valence标签下ESTNet均优于当前主流的网络。另外,为寻找主观情绪状态与生物学之间的客观关联性,基于脑电信号的可视化操作,借助脑地形图对相关情绪理论做了解释性说明。 展开更多
关键词 脑电情绪识别 图神经网络 Transformer模型 时空卷积神经网络 脑地形图
在线阅读 下载PDF
融合区域相似性的时空卷积交通事故风险预测
19
作者 王庆荣 饶会会 +1 位作者 朱昌锋 和蓉 《控制工程》 北大核心 2025年第10期1748-1759,共12页
针对现有交通事故风险预测模型对区域空间相关性和动态时空特征提取不足的问题,基于融合区域相似性的时空卷积网络构建了交通事故风险预测模型。首先,基于图卷积网络构建了空间通道注意力多图卷积网络,以全面捕捉局部地理空间相似性和... 针对现有交通事故风险预测模型对区域空间相关性和动态时空特征提取不足的问题,基于融合区域相似性的时空卷积网络构建了交通事故风险预测模型。首先,基于图卷积网络构建了空间通道注意力多图卷积网络,以全面捕捉局部地理空间相似性和全局语义属性;其次,引入时空注意力,自适应地学习事故特征的动态表征;最后,通过多头图注意力网络捕捉空间依赖性,并利用融合双向时序卷积的门控单元建模长序列时间相关性。实验在两个真实的交通事故数据集上对所提模型进行了验证。实验结果表明,所提模型对交通事故风险的预测性能优于长短时记忆神经网络等基准模型。 展开更多
关键词 智能交通 风险预测 图卷积网络 注意力机制 时空卷积
原文传递
融合多源时空信息鸟瞰图的未来实例分割预测
20
作者 冯霞 陈爽 +1 位作者 卢敏 左海超 《吉林大学学报(工学版)》 北大核心 2025年第10期3372-3383,共12页
针对现有实例分割存在的难以识别被遮挡对象、对噪声和视角变化鲁棒性不够等问题,提出了一种融合多源时空信息的场景细粒度鸟瞰图生成方法(MSTFB)。该方法首先基于栅格化场景鸟瞰图,采用自注意力机制融合时序鸟瞰图特征,通过时空跨域卷... 针对现有实例分割存在的难以识别被遮挡对象、对噪声和视角变化鲁棒性不够等问题,提出了一种融合多源时空信息的场景细粒度鸟瞰图生成方法(MSTFB)。该方法首先基于栅格化场景鸟瞰图,采用自注意力机制融合时序鸟瞰图特征,通过时空跨域卷积网络捕获实例间相对位置并聚合多尺度特征,得到场景细粒度鸟瞰图。在此基础上,又提出了一种融合时序编码和样本特征的鸟瞰图实例分割预测方法(ESF-BISP),采用ConvGRU对历史帧进行时序语义编码得到时序特征,通过条件变分自编码器生成当前帧细粒度鸟瞰图的状态特征分布并采样鸟瞰图的样本特征,再利用高斯混合模型融合鸟瞰图时序特征和样本特征,经解码得到未来帧场景细粒度鸟瞰图。在公开数据集nuScenes上的实验结果表明,MSTFB方法和基准算法LSS相比,车辆分割IoU指标提升了7.09%,能有效分割远端车辆和被遮挡车辆;ESFBISP能更好地捕获场景中动态实例的变化,无论是用于实例分割,还是用于未来实例分割预测,其性能都显著优于基准算法。 展开更多
关键词 计算机应用技术 实例分割预测 鸟瞰图时序编码 多视角图像 时空跨域卷积网络
原文传递
上一页 1 2 17 下一页 到第
使用帮助 返回顶部