期刊文献+
共找到907,646篇文章
< 1 2 250 >
每页显示 20 50 100
基于S-O-R模型的在校研究生数字囤积行为识别研究 被引量:1
1
作者 徐绪堪 闫瑛洁 高伟 《情报科学》 北大核心 2025年第1期161-168,共8页
【目的/意义】大数据时代数据剧增的同时数字囤积行为也日益严重,尤其是在校研究生群体,数字囤积表现尤为显著。日益增强的数字囤积行为严重阻碍了在校研究生群体科研能力的提升,本文通过数字囤积行为识别引导在校研究生有序高效进行数... 【目的/意义】大数据时代数据剧增的同时数字囤积行为也日益严重,尤其是在校研究生群体,数字囤积表现尤为显著。日益增强的数字囤积行为严重阻碍了在校研究生群体科研能力的提升,本文通过数字囤积行为识别引导在校研究生有序高效进行数据积累,提升在校研究生数据素养,促进其更快地适应学术研究氛围。【方法/过程】针对在校研究生数据无序积累、使用率低下、数据转化能力不足等问题,使用访谈法收集56条数据,利用扎根理论对在校研究生数字囤积行为进行识别,基于S-O-R模型构建在校研究生数字囤积行为识别模型。【结果/结论】最终得出16个范畴、56个概念并形成在校研究生数字囤积行为识别模型,明晰在校研究生数字囤积行为的影响因素与表现并对其数字囤积行为进行分类,给出增强共享数据意识、定期进行心理访谈、改善数据积累习惯等针对性建议。【创新/局限】文章将S-O-R模型应用于数字囤积行为的研究,将心理学概念与情报学分析方法相结合。下一步将对不同环境下的不同群体数字囤积行为进行针对性、拓展性研究,尤其是对数字囤积行为的深度量化研究。 展开更多
关键词 在校研究生 数字囤积 行为识别 s-o-r模型 扎根理论
原文传递
大学生信息成瘾行为的触发路径与干预策略:基于S-O-R理论视角 被引量:1
2
作者 张晨 姜为翰 钱鹏博 《科技情报研究》 2025年第1期118-130,共13页
[目的/意义]文章以大学生为研究对象,探究该群体信息成瘾行为的影响机制,为大学生信息成瘾行为的预防和管理提供价值参考。[方法/过程]引入刺激-机体-反应(S-O-R)理论,利用文献梳理总结大学生信息成瘾过程中的外部刺激,深度剖析机体在... [目的/意义]文章以大学生为研究对象,探究该群体信息成瘾行为的影响机制,为大学生信息成瘾行为的预防和管理提供价值参考。[方法/过程]引入刺激-机体-反应(S-O-R)理论,利用文献梳理总结大学生信息成瘾过程中的外部刺激,深度剖析机体在成瘾过程中产生的认知心理,构建大学生信息成瘾行为理论模型,运用结构方程模型实证分析大学生信息成瘾的触发路径。[结果/结论]研究结果表明,信息过载、间歇性奖励和行为管理会显著正向影响大学生的不确定性回避,进而导致大学生信息成瘾。同时,信息过载也会使大学生产生信息焦虑,信息焦虑显著正向影响大学生信息成瘾行为。面向高等院校、大学生群体和科技企业,提出针对性建议与对策,有助于完善高等院校管理体系,促进学生适应信息化环境,推动高等教育事业更好发展。 展开更多
关键词 信息成瘾 s-o-r理论 结构方程模型 干预策略
在线阅读 下载PDF
基于S-O-R模型的大学生网络社交跨圈层意愿研究
3
作者 曲峡 王育晓 闫星宇 《高校辅导员学刊》 2025年第3期60-68,98,99,共11页
基于刺激-机体-反应(S-O-R)模型,深入探讨大学生网络社交跨圈层意愿的形成机制,综合运用信息生态理论分析信息窄化、信息过载、圈层文化、个性化推荐和信息素养等刺激因素如何影响其跨圈层意愿进而对跨圈层行为产生影响。在此基础上,提... 基于刺激-机体-反应(S-O-R)模型,深入探讨大学生网络社交跨圈层意愿的形成机制,综合运用信息生态理论分析信息窄化、信息过载、圈层文化、个性化推荐和信息素养等刺激因素如何影响其跨圈层意愿进而对跨圈层行为产生影响。在此基础上,提出相应研究假设并采用结构方程模型(SEM)进行验证,结果表明:信息窄化对跨圈层意愿的负向影响不显著,圈层文化对跨圈层意愿具有负向影响,信息过载、个性化推荐和信息素养对跨圈层意愿具有正向影响,大学生跨圈层意愿对其跨圈层行为产生显著正向影响。研究结果为打破信息茧房、促进大学生跨圈层交流提供了理论支持与实践路径,为高校思想政治教育工作创新提供了实证依据。 展开更多
关键词 大学生 网络社交 s-o-r模型 跨圈层意愿 圈层文化
在线阅读 下载PDF
基于S-O-R模型的信息素养教育影响体育行为的中介路经研究
4
作者 张婕 王慧琳 《山东体育科技》 2025年第1期9-14,共6页
教育干预是维持长期体育行为的重要因素之一。基于S-O-R模型,从外部刺激和内部转化,探索信息素养教育模式影响体育行为的模型及路径。以信息素养课程学习者为研究对象进行实证研究,发现信息素养教育从体育信息的视角提供的知识支持、技... 教育干预是维持长期体育行为的重要因素之一。基于S-O-R模型,从外部刺激和内部转化,探索信息素养教育模式影响体育行为的模型及路径。以信息素养课程学习者为研究对象进行实证研究,发现信息素养教育从体育信息的视角提供的知识支持、技术支持和环境支持,通过个体感知后内化为参与意愿正向影响体育行为。 展开更多
关键词 s-o-r模型 信息素养教育 体育行为 体育参与意愿 个体感知
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
5
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
基于S-O-R模型的人工智能应用对旅游者行为意向的影响研究
6
作者 郑玮 巴兆祥 《复旦学报(自然科学版)》 北大核心 2025年第4期412-425,共14页
随着科技的快速发展和虚拟旅游的兴起,旅游业已经逐渐走向数智化,而人工智能的出现则改变了个体间的交流方式。在刺激机体反应(Stimulus-Organism-Response,S-O-R)模型下,运用结构方程模型(Structural Equation Modeling,SEM),从人工智... 随着科技的快速发展和虚拟旅游的兴起,旅游业已经逐渐走向数智化,而人工智能的出现则改变了个体间的交流方式。在刺激机体反应(Stimulus-Organism-Response,S-O-R)模型下,运用结构方程模型(Structural Equation Modeling,SEM),从人工智能应用的功能质量、信息质量和服务质量3个影响因子出发,研究人工智能应用对旅游者行为意向影响过程的演变。结果表明,除有用性对旅游者行为意向影响产生显著作用外,关于功能质量的其他3个关系假设均未得到验证,说明功能质量并不是决定旅游者产生行为意向的关键要素。信息质量对旅游者行为意向影响研究的4个假设均得到验证,其中信息性对旅游者感知价值影响的路径系数最高(0.775),说明信息性是影响旅游者感知价值产生的重要因素。在服务质量的交互性和定制性这两个要素中,除定制性对旅游者感知价值影响不显著外,其他3个研究假设均得到验证,其中交互性对旅游者感知价值(0.543)和旅游者行为意向(0.532)的影响路径系数较大,说明人工智能应用中交流互动的本性特征契合旅游者需求。根据上述研究结论,应优化人工智能应用的旅游信息质量,加强用户管理,以此提升旅游者的满意度和忠诚度。 展开更多
关键词 s-o-r模型 人工智能应用 旅游者 行为意向
在线阅读 下载PDF
基于24Model的动火作业事故致因文本挖掘 被引量:1
7
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
全民健身公共服务数字应用的影响因素、现实障碍与应对策略——基于S-O-R整合模型的实证分析
8
作者 冯俊翔 郑家鲲 史小强 《武汉体育学院学报》 北大核心 2025年第6期19-29,56,共12页
构建基于S-O-R框架的MOA-TAM整合模型,通过对852位民众调查数据的实证分析表明,动机、机会、能力对全民健身公共服务数字技术应用行为具有显著的正向作用,并通过对感知易用性、感知有用性和感知风险性的影响间接促进数字技术应用行为的... 构建基于S-O-R框架的MOA-TAM整合模型,通过对852位民众调查数据的实证分析表明,动机、机会、能力对全民健身公共服务数字技术应用行为具有显著的正向作用,并通过对感知易用性、感知有用性和感知风险性的影响间接促进数字技术应用行为的产生。在此基础上,结合文献资料、实地调研、逻辑分析等方法围绕数字技术应用动机、应用机会、应用能力三个方面探究我国全民健身公共服务数字应用障碍形成的主要原因;并提出以下应对策略:提升民众数字获得感与认可度,充分激活数字技术应用动机;缩小数字鸿沟与塑造包容环境,均衡提供数字技术应用机会;降低数字操作门槛与加强指导,着力强化数字技术应用能力。 展开更多
关键词 全民健身公共服务 数字应用障碍 数字应用行为 影响机制 s-o-r整合模型
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
9
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
10
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
基于S-O-R模型的高校图书馆短视频阅读推广服务创新研究
11
作者 李迎迎 《文化创新比较研究》 2025年第28期182-188,共7页
随着短视频平台的快速发展和用户阅读方式的转变,高校图书馆亟须构建适应新媒体环境的阅读推广体系。该文基于S-O-R理论框架,构建了高校图书馆短视频阅读推广服务创新体系。借助S-O-R模型,短视频推广可通过精准感知需求、强化情绪共鸣... 随着短视频平台的快速发展和用户阅读方式的转变,高校图书馆亟须构建适应新媒体环境的阅读推广体系。该文基于S-O-R理论框架,构建了高校图书馆短视频阅读推广服务创新体系。借助S-O-R模型,短视频推广可通过精准感知需求、强化情绪共鸣、促进信息共享三阶段,激发读者的阅读兴趣和情感认同,推动阅读行为由浅层参与向深度延展转化。同时,高校图书馆可结合数据分析、虚拟社区和跨平台传播,构建互动性强、体验感丰富的阅读生态,从而实现用户需求洞察与品牌传播双重效益。该文不仅为优化高校图书馆短视频阅读推广提供理论支持与实践路径,还能为全民阅读战略的持续推进提供有益参考。 展开更多
关键词 s-o-r模型 高校图书馆 短视频 阅读推广 用户体验 服务创新
原文传递
滑雪消费者网络口碑传播意愿的影响机制研究——基于S-O-R模型 被引量:1
12
作者 庞丹 刘晓颖 李南虎 《时代经贸》 2025年第9期76-80,共5页
在数字经济时代,消费者网络口碑传播对于产品运营管理方而言尤为重要。本研究基于刺激-机体-反应(S-O-R)理论,构建了“服务同理心感知-难忘经历-网络口碑传播意愿”关系模型,并通过353份滑雪消费者的有效问卷数据进行实证检验,结果表明... 在数字经济时代,消费者网络口碑传播对于产品运营管理方而言尤为重要。本研究基于刺激-机体-反应(S-O-R)理论,构建了“服务同理心感知-难忘经历-网络口碑传播意愿”关系模型,并通过353份滑雪消费者的有效问卷数据进行实证检验,结果表明:服务同理心感知对难忘经历、网络口碑传播意愿均具有显著正向影响;难忘经历在服务同理心感知和消费者网络口碑传播意愿的正向影响中起到部分中介作用。实证结果对于滑雪消费者行为的理论研究进行了有益补充,同时,为消费领域服务质量提升及社交媒体营销提供了新的实践启示。 展开更多
关键词 滑雪消费者 服务同理心感知 网络口碑传播 s-o-r模型
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
13
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
14
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
15
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
16
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
17
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:1
18
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model Structural deformation Impact loads Structural safety of projectile
在线阅读 下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM 被引量:2
19
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部