The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ...This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.展开更多
Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems.This study in...Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems.This study investigates the magnetohydrodynamic(MHD)thermosolutal convection of a Casson fluid within an inclined,porous microchannel subjected to convective boundary conditions.The nonlinear,coupled equations governing momentum,energy,and species transport are solved numerically using the MATLAB bvp4c solver,ensuring high numerical accuracy and stability.To identify the dominant parameters influencing flow behavior and to optimize transport performance,a comprehensive hybrid optimization framework—combining a modified Taguchi design,Grey Relational Analysis(GRA),and Principal Component Analysis(PCA)—is proposed.This integrated strategy enables the simultaneous assessment of skin friction,Nusselt number,and Sherwood number,providing a rigorous multi-objective evaluation of system performance.Comparative validation with benchmark results from the literature confirms the accuracy and reliability of the present formulation and its numerical implementation.The results highlight the intricate coupling among flow slip,buoyancy effects,and convective transport mechanisms.Increased slip flow enhances axial velocity,while a higher solutal Biot number intensifies concentration gradients near the channel walls.Conversely,a lower thermal Biot number diminishes the temperature field,indicating weaker heat transfer across the boundaries.PCA results reveal that the first principal component(PC1)accounts for most of the system variance,demonstrating the dominant influence of coupled flow and transport parameters on overall system performance.展开更多
Wind turbines play a vital role in renewable energy production.This review examines advancements in wind turbine blade morphing technologies aimed at enhancing power coefficients,reducing vibrations,andminimizing nois...Wind turbines play a vital role in renewable energy production.This review examines advancements in wind turbine blade morphing technologies aimed at enhancing power coefficients,reducing vibrations,andminimizing noise generation.Efficiency,vibration,and noise levels can be optimized through morphing techniques applied to the blade’s shape,leading edge,trailing edge,and surface.Leading-edge morphing is particularly effective in improving efficiency and reducing noise,as flow attachment and separation at the leading edge significantly influence lift and vortex generation.Morphing technologies often draw inspiration from bionic designs based on natural phenomena,highlighting the potential of biomimicry to improve aerodynamic performance and energy capture.Understanding fluid-structure interactions is critical to ensuring the lifespan,performance,and safety of wind turbine blades,which directly affect operational efficiency and noise levels.This review underscores the importance of comprehending the interdependencies between aerodynamics,vibration,and noise to guide future research and policy in sustainable wind energy development.By summarizing key advancements in the field,this paper serves as a valuable resource for researchers,policymakers,and industry leaders involved in wind energy technologies.展开更多
In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature a...In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate.This is the focus of the current study.It proposes variableviscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil,with the aim of investigating the effects of water temperature and velocity on the recovery rate.First,two sets of experimental data are used to construct explicit temperature-dependent viscosity models for Bonny-light crude oil and water.These viscosity models are incorporated into the Buckley-Leverette equation for the dynamics of water saturation.A convex combination of the thermal conductivities of oil and water is used to formulate a heat propagation model.A finite volume scheme with temperature-dependent HLL numerical flux is proposed for saturation,while a finite difference approximation is derived for the heat model,both on a staggered grid.The convergence of the method is verified numerically.Simulations are conducted with different parameter values.The results show that at a wall temperature of 10℃,an increase in the injection velocity from 0.1 to 0.25 increases the production rate from 8.33%to 20.8%.Meanwhile,with an injection velocity of v=1,an increase in the temperature of the injected water from 25℃ to 55℃ increases production rate from 59.48%to 61.95%.Therefore,it is concluded that an increase in either or both the temperature and velocity of the injected water leads to increased oil production,which is physically realistic.This indicates that the developed model is able to give useful insights into hot water flooding.展开更多
An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransv...An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransverse size of the droplet exceeds the cell thickness.The viscosities of the droplet and the surrounding liquid are comparable.Relevant effort is provided to design and test an experimental setup and validate a protocol for determining the mass transfer rate of a solute in a two-liquid system.In particular,fluorescent dye Rhodamine B is considered as the solute.A critical comparison of the situations with and without oscillation is implemented.A procedure is introduced and validated to determine the molecular and effective diffusion coefficients through evaluation of the growth of the diffusion zone width over time.It is shown that,in the presence of the liquid oscillations,there is a significant increase in the width of the zone in which Rhodamine B is present compared to the reference case with no oscillations.The oscillatory flow leads to an intensification of the solute diffusion due to intense time-averaged flows inside the droplet and the surrounding liquid and oscillations of the drop itself.Thestudy is of significant practical interest with particular relevance to typical processes for liquid-liquid extraction.展开更多
Carbon dioxide(CO_(2))is often monitored as a convenient yardstick for indoor air safety,yet its ability to stand in for pathogen-laden aerosols has never been settled.To probe the question,we reproduced an open-plan ...Carbon dioxide(CO_(2))is often monitored as a convenient yardstick for indoor air safety,yet its ability to stand in for pathogen-laden aerosols has never been settled.To probe the question,we reproduced an open-plan office at full scale(7.2m×5.2m×2.8m)and introduced a breathing plume that carried 4% CO_(2),together with a polydisperse aerosol spanning 0.5–10μm(1320 particles s^(−1)).Inlet air was supplied at 0.7,1.4,and 2.1 m s^(−1),and the resulting fields were simulated with a Realisable k–εRANS model coupled to Lagrangian particle tracking.Nine strategically placed probes provided validation;the calibrated solution deviated fromthe experiment by 58 ppm for CO_(2)(8.1%RMSE)and 0.008 m s^(−1)for velocity(15.7%RMSE).Despite this agreement,gas and particles behaved in sharply different ways.Room-averaged CO_(2)varied by<15%,whereas the aerosol mass rose to almost three-fold the background within slowmoving corner vortices.Sub-micron particles stayed aloft along streamlines,while those≥5μmpeeled away and settled on nearby surfaces.The divergence shows that neither the CO_(2)level nor themeanageof air,taken in isolation,delineates all high-exposure zones.We therefore recommend that ventilation design be informed by a composite diagnosis that couples gas data,size-resolved particle measurements,and rapid CFD appraisal.展开更多
This paper presents both analytical and numerical studies of the conservative Sawada-Kotera equation and its dissipative generalization,equations known for their soliton solutions and rich chaotic dynamics.These model...This paper presents both analytical and numerical studies of the conservative Sawada-Kotera equation and its dissipative generalization,equations known for their soliton solutions and rich chaotic dynamics.These models offer valuable insights into nonlinear wave propagation,with applications in fluid dynamics and materials science,including systems such as liquid crystals and ferrofluids.It is shown that the conservative Sawada-Kotera equation supports traveling wave solutions corresponding to elliptic limit cycles,as well as two-and three-dimensional invariant tori surrounding these cycles in the associated ordinary differential equation(ODE)system.For the dissipative generalized Sawada-Kotera equation,chaotic wave behavior is observed.The transition to chaos in the corresponding ODE systemfollows a universal bifurcation scenario consistent with the framework established by FShM(Feigenbaum-Sharkovsky-Magnitskii)theory.Notably,this study demonstrates for the first time that the conservative Sawada-Kotera equation can exhibit complex quasi-periodic wave solutions,while its dissipative counterpart admits an infinite number of stable periodic and chaotic waveforms.展开更多
In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool...In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate(SDS)surfactant in saturated deionized water.Experiments were conducted at standard atmospheric pressure,with heat flux ranging from 20 to 100 kW/m2.The heating surface,positioned below the layer of freely moving copper beads,allowed the particle layer to shift due to liquid convection and steam nucleation.The study reports on the influence of copper bead diameter(2,3,4,and 5 mm),particle quantity,arrangement,and SDS concentration(20,200,and 500 ppm).It is shown that the combination of 5 mm particles and a 500 ppm SDS concentration can yield a remarkable 139%improvement in heat transfer efficiency.As demonstrated by direct flow visualization,bubble formation occurs primarily in the gaps between the particles and the heated surface,with the presence of SDS reducing bubble size and accelerating bubble detachment.展开更多
The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the a...The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus.It is demonstrated that the librational liquefaction of the granular material results in pattern formation.This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force.The inertial wave induces vortical fluid flow which entrains particles from rest and forms eroded areas that are equidistant from each other along the axis of rotation.Theoretical analysis and experiments demonstrate that a liquefied layer of granular material oscillates with a radian frequency equal to the angular velocity of the annulus and interacts with the inertial wave it excites.The new phenomenon of libration-induced pattern formation is of practical interest as it can be used to control multiphase flows and mass transfer in rotating containers in a variety of industrial processes.展开更多
This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also pr...This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.展开更多
This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide(CO_(2))–water enhanced geothermal systems(EGS).The model integrates geological ...This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide(CO_(2))–water enhanced geothermal systems(EGS).The model integrates geological parameters,thermal gradients,and control schedules to enable fast and accurate prediction of complex reservoir dynamics.The main contributions are:(i)development of a workflow that couples physics-based reservoir simulation with a Transformer neural network architecture,(ii)design of physics-guided loss functions to enforce conservation of mass and energy,(iii)application of the surrogate model to closed-loop optimization using a differential evolution(DE)algorithm,and(iv)incorporation of economic performance metrics,such as net present value(NPV),into decision support.The proposed framework achieves root mean square error(RMSE)of 3–5%,mean absolute error(MAE)below 4%,and coefficients of determination greater than 0.95 across multiple prediction targets,including production rates,pressure distributions,and temperature fields.When compared with recurrent neural network(RNN)baselines such as gated recurrent units(GRU)and long short-term memory networks(LSTM),as well as a physics-informed reduced-order model,the Transformer-based approach demonstrates superior accuracy and computational efficiency.Optimization experiments further show a 15–20%improvement in NPV,highlighting the framework’s potential for real-time forecasting,optimization,and decision-making in geothermal reservoir engineering.展开更多
Condensate gas reservoirs have attracted increasing attention in recent years due to their significant development potential and dual value from both natural gas and condensate oil.However,their exploitation is often ...Condensate gas reservoirs have attracted increasing attention in recent years due to their significant development potential and dual value from both natural gas and condensate oil.However,their exploitation is often hindered by the dual challenges of retrograde condensation and water invasion,which can markedly reduce recovery factors.CO_(2) injection offers a promising solution by alleviating condensate blockage,suppressing water influx,and simultaneously enabling geological CO_(2) storage.Accordingly,research on optimizing CO_(2) injection to mitigate formation damage is critical for the efficient development and management of edge-and bottom-water condensate gas reservoirs.In this study,a long-core displacement mechanism model was constructed using CMG-GEMTM andWinPropTM.The model simulates reservoir depletion from initial conditions(41.2 MPa,102.5℃)to the current reservoir pressure(13.5 MPa),followed by gas injection.It was then upscaled to the edge-and bottom-water reservoir scale to capture complex fluid phase behavior,enabling a multi-factor coupled optimization of CO_(2) injection strategies.Model reliability was verified through comparison with core experimental results.Subsequently,the effects of geological parameters(e.g.,reservoir permeability and rhythmic heterogeneity)and engineering parameters(e.g.,injection pressure and rate)on reservoir performance were systematically evaluated.The results indicate that appropriate target zone selection and optimization of injection pressure and rate—avoiding formation fracturing and preventing gas channeling—can substantially improve reservoir development outcomes.Applying this approach to the K Gas Reservoir,the optimal strategy involved injecting CO_(2) at a rate of 5×10^(4) m^(3)/d,restoring pressure to 22.5 MPa in a composite rhythmic reservoir with an average permeability of 10 mD.This scheme increased the condensate oil recovery factor by 18.7 percentage points(from 43.9%to 60.9%)while reducing the water-cut rise rate by approximately 34%.展开更多
The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,tra...The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.展开更多
A precise diagnosis of the complex post-fracturing characteristics and parameter variations in tight gas reservoirs is essential for optimizing fracturing technology,enhancing treatment effectiveness,and assessing pos...A precise diagnosis of the complex post-fracturing characteristics and parameter variations in tight gas reservoirs is essential for optimizing fracturing technology,enhancing treatment effectiveness,and assessing post-fracturing production capacity.Tight gas reservoirs face challenges due to the interaction between natural fractures and induced fractures.To address these issues,a theoretical model for diagnosing fractures under varying leak-off mechanisms has been developed,incorporating the closure behavior of natural fractures.This model,grounded in material balance theory,also accounts for shut-in pressure.The study derived and plotted typical G-function charts,which capture fracture behavior during closure.By superimposing the G-function in the closure phase of natural fractures with pressure derivative curves,the study explored how fracture parameters—including leak-off coefficient,fracture area,closure pressure,and closure time—impact these diagnostic charts.Findings show that variations in natural fracture flexibility,fracture area,and controlling factors influence the superimposed G-function pressure derivative curve,resulting in distinctive“concave”or“convex”patterns.Field data from Well Y in a specific tight gas reservoir were used to validate the model,confirming both its reliability and practicality.展开更多
Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly unde...Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly under microgravity conditions.A key challenge in this field is understanding the effect of rotation on TVC,as fluid oscillations in rotating systems exhibit unique and specific characteristics.In this study,we examine TVC in a vertical flat layer with boundaries at different temperatures,rotating around a horizontal axis.The distinctive feature of this study is that the fluid oscillations within the cavity are not induced by vibrations of the cavity itself,but rather by the gravity field,giving them a tidal nature.Our findings reveal that inertial waves generated in the rotating layer qualitatively alter the TVC structure,producing time-averaged flows in the form of toroidal vortices.Experimental investigations of the structure of oscillatory and time-averaged flows,conducted using Particle Image Velocimetry(PIV)for flow velocity visualization,are complemented by theoretical calculations of inertial modes in a cavity with this geometry.To the best of our knowledge,this study represents the first of its kind.The agreement between experimental results and theoretical predictions confirms that the formation of convective structures in the form of toroidal vortices is driven by inertial waves induced by the gravity field.A decrease in the rotational velocity leads to a transformation of the convective structures,shifting from toroidal vortices of inertial-wave origin to classical cellular TVC.We present dimensionless parameters that define the excitation thresholds for both cellular convection and toroidal structures.展开更多
To address the challenges of poor surface quality and high energy consumption in marble cutting,this study introduces an auxiliary abrasive jet cutting technology enhanced by the use of polyacrylamide(PAM)as a dragred...To address the challenges of poor surface quality and high energy consumption in marble cutting,this study introduces an auxiliary abrasive jet cutting technology enhanced by the use of polyacrylamide(PAM)as a dragreducing additive.The effects of feed rate(50-300 mm/min),polymer concentration(0-0.5 g/L),and nozzle spacing(4-12 mm)on kerf width and surface roughness are systematically investigated through an orthogonal experimental design.Results reveal that feed rate emerges as themost significant factor(p<0.01),followed by PAM concentration and nozzle spacing.The optimal set of parameters,comprising a 200 mm/min feed rate,0.3 g/L PAM concentration,and 6mmnozzle spacing,achieves the narrowest kerf width(0.867 mm)and the lowest surface roughness(10.220μm).Analysis of the underlying mechanisms demonstrates that PAMenhances the energy efficiency of the jet by suppressing turbulent pulsations and increasing fluid viscoelasticity,thereby minimizing energy loss during the cutting process.展开更多
An experimental investigation of the dynamics of the interface between two low-viscosity fluids with high density contrast oscillating in a fixed vertical slotted channel has been conducted.It has been found that as t...An experimental investigation of the dynamics of the interface between two low-viscosity fluids with high density contrast oscillating in a fixed vertical slotted channel has been conducted.It has been found that as the amplitude of the liquid column oscillations increases,parametric oscillations of the interface are excited in the form of a standing wave located in the channel plane.In particular,depending on the interfacial tension,the standing waves have a frequency equal to that of liquid piston oscillations(harmonic response),or half of the frequency of oscillations of the liquid column in the channel(subharmonic response).The detected type of instability has a gravitational-capillary nature and is analogous to Faraday waves.The analysis of the overcritical dynamics of wave oscillations indicates that interfacial tension plays a crucial role in determining the type of parametric instability.At high interfacial tension,only synchronous(harmonic)wave modes are observed,and the threshold of the wave excitation is determined by the amplitude of piston oscillations of the liquid column.In this case,the oscillation acceleration does not play a role and has a small value in the threshold of the synchronous mode response.In the case of weak surface tension,subharmonic oscillations are observed.The threshold for the development of these oscillations is determined by the dimensionless acceleration of the oscillating liquid column and remains almost constant with variations in the dimensionless frequency of oscillations.At moderate values of interfacial tension(in the region of moderate dimensionless frequencies),a synchronous wave mode emerges in the stability threshold of the oscillating interface.As the dimensionless acceleration is increased further,a subharmonic mode is excited.The growth of subharmonic oscillations occurs against the background of harmonic wave oscillations,with the oscillations of the interface representing a combination of two standing waves.展开更多
In recent years,tuned liquid dampers(TLDs)have attracted significant research interest;however,overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads.In ...In recent years,tuned liquid dampers(TLDs)have attracted significant research interest;however,overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads.In particular,it remains unclear whether the water in aqueducts—common water-diversion structures in many countries—can serve as an effective TLD.This study investigates the generation mechanisms of sloshing loads during the first-order transverse resonance of water in a U-shaped aqueduct using a two-dimensional(2D)numerical model.The results reveal that,at the equilibrium position,the free surface difference between the left and right walls,the horizontal force on the aqueduct,and the fluctuating component of the vertical force all reach their maxima,with energy predominantly stored as potential energy.At the maximum displacement position,the surface difference and horizontal force drop to zero,while the fluctuating vertical force attains its minimum and energy shifts primarily to kinetic form.At this stage,static pressure is governed solely by the vertical convective acceleration,whereas at equilibrium it is closely linked to both the free surface difference and vertical local acceleration of the water.This dynamic energy exchange generates vertical force oscillations even when the free surface appears nearly symmetric.展开更多
Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the...Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the“thermovibrational mechanism”.Convective flow is excited due to oscillations of a non-isothermal rotating fluid.Thermal vibrational convectionmanifests in the form of two-dimensional vortices elongated along the axis of rotation,which develop in a threshold manner with an increase in the amplitude of fluid oscillations.The objective of the present study is to clarify the nature of another phenomenon,i.e.,three-dimensional convective vortices observed in the experiments both before the excitation of the convection described above and in the supercritical region.The experimental study of the oscillatory and the time-averaged flow fields by particle image velocimetry is accompanied by the theoretical research of inertial waves.It is found that three-dimensional fluid flows owe their origin to inertial waves.This is confirmed by a high degree of agreement between the experimental and theoretical results.Experiments with cavities of different lengths indicate that the vortices are clearly seen in cavities thatmeet the conditions of resonant excitation of inertial modes.Furthermore,the length of the cavity has no effect on heat transfer,which is explained by the comparatively low intensity of the wave-induced flows.The main contribution to heat transfer is due to vortices elongated along the axis of rotation.The novel results are of significant practical importance in various fields.展开更多
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
文摘This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field.
文摘Understanding the complex interaction between heat and mass transfer in non-Newtonian microflows is essential for the development and optimization of efficient microfluidic and thermal management systems.This study investigates the magnetohydrodynamic(MHD)thermosolutal convection of a Casson fluid within an inclined,porous microchannel subjected to convective boundary conditions.The nonlinear,coupled equations governing momentum,energy,and species transport are solved numerically using the MATLAB bvp4c solver,ensuring high numerical accuracy and stability.To identify the dominant parameters influencing flow behavior and to optimize transport performance,a comprehensive hybrid optimization framework—combining a modified Taguchi design,Grey Relational Analysis(GRA),and Principal Component Analysis(PCA)—is proposed.This integrated strategy enables the simultaneous assessment of skin friction,Nusselt number,and Sherwood number,providing a rigorous multi-objective evaluation of system performance.Comparative validation with benchmark results from the literature confirms the accuracy and reliability of the present formulation and its numerical implementation.The results highlight the intricate coupling among flow slip,buoyancy effects,and convective transport mechanisms.Increased slip flow enhances axial velocity,while a higher solutal Biot number intensifies concentration gradients near the channel walls.Conversely,a lower thermal Biot number diminishes the temperature field,indicating weaker heat transfer across the boundaries.PCA results reveal that the first principal component(PC1)accounts for most of the system variance,demonstrating the dominant influence of coupled flow and transport parameters on overall system performance.
文摘Wind turbines play a vital role in renewable energy production.This review examines advancements in wind turbine blade morphing technologies aimed at enhancing power coefficients,reducing vibrations,andminimizing noise generation.Efficiency,vibration,and noise levels can be optimized through morphing techniques applied to the blade’s shape,leading edge,trailing edge,and surface.Leading-edge morphing is particularly effective in improving efficiency and reducing noise,as flow attachment and separation at the leading edge significantly influence lift and vortex generation.Morphing technologies often draw inspiration from bionic designs based on natural phenomena,highlighting the potential of biomimicry to improve aerodynamic performance and energy capture.Understanding fluid-structure interactions is critical to ensuring the lifespan,performance,and safety of wind turbine blades,which directly affect operational efficiency and noise levels.This review underscores the importance of comprehending the interdependencies between aerodynamics,vibration,and noise to guide future research and policy in sustainable wind energy development.By summarizing key advancements in the field,this paper serves as a valuable resource for researchers,policymakers,and industry leaders involved in wind energy technologies.
文摘In the early stages of oil exploration,oil is produced through processes such as well drilling.Later,hot water may be injected into the well to improve production.A key challenge is understanding how the temperature and velocity of the injected hot water affect the production rate.This is the focus of the current study.It proposes variableviscosity mathematical models for heat and water saturation in a reservoir containing Bonny-light crude oil,with the aim of investigating the effects of water temperature and velocity on the recovery rate.First,two sets of experimental data are used to construct explicit temperature-dependent viscosity models for Bonny-light crude oil and water.These viscosity models are incorporated into the Buckley-Leverette equation for the dynamics of water saturation.A convex combination of the thermal conductivities of oil and water is used to formulate a heat propagation model.A finite volume scheme with temperature-dependent HLL numerical flux is proposed for saturation,while a finite difference approximation is derived for the heat model,both on a staggered grid.The convergence of the method is verified numerically.Simulations are conducted with different parameter values.The results show that at a wall temperature of 10℃,an increase in the injection velocity from 0.1 to 0.25 increases the production rate from 8.33%to 20.8%.Meanwhile,with an injection velocity of v=1,an increase in the temperature of the injected water from 25℃ to 55℃ increases production rate from 59.48%to 61.95%.Therefore,it is concluded that an increase in either or both the temperature and velocity of the injected water leads to increased oil production,which is physically realistic.This indicates that the developed model is able to give useful insights into hot water flooding.
基金supported by the Russian Science Foundation(Grant No.23-11-00242).
文摘An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransverse size of the droplet exceeds the cell thickness.The viscosities of the droplet and the surrounding liquid are comparable.Relevant effort is provided to design and test an experimental setup and validate a protocol for determining the mass transfer rate of a solute in a two-liquid system.In particular,fluorescent dye Rhodamine B is considered as the solute.A critical comparison of the situations with and without oscillation is implemented.A procedure is introduced and validated to determine the molecular and effective diffusion coefficients through evaluation of the growth of the diffusion zone width over time.It is shown that,in the presence of the liquid oscillations,there is a significant increase in the width of the zone in which Rhodamine B is present compared to the reference case with no oscillations.The oscillatory flow leads to an intensification of the solute diffusion due to intense time-averaged flows inside the droplet and the surrounding liquid and oscillations of the drop itself.Thestudy is of significant practical interest with particular relevance to typical processes for liquid-liquid extraction.
文摘Carbon dioxide(CO_(2))is often monitored as a convenient yardstick for indoor air safety,yet its ability to stand in for pathogen-laden aerosols has never been settled.To probe the question,we reproduced an open-plan office at full scale(7.2m×5.2m×2.8m)and introduced a breathing plume that carried 4% CO_(2),together with a polydisperse aerosol spanning 0.5–10μm(1320 particles s^(−1)).Inlet air was supplied at 0.7,1.4,and 2.1 m s^(−1),and the resulting fields were simulated with a Realisable k–εRANS model coupled to Lagrangian particle tracking.Nine strategically placed probes provided validation;the calibrated solution deviated fromthe experiment by 58 ppm for CO_(2)(8.1%RMSE)and 0.008 m s^(−1)for velocity(15.7%RMSE).Despite this agreement,gas and particles behaved in sharply different ways.Room-averaged CO_(2)varied by<15%,whereas the aerosol mass rose to almost three-fold the background within slowmoving corner vortices.Sub-micron particles stayed aloft along streamlines,while those≥5μmpeeled away and settled on nearby surfaces.The divergence shows that neither the CO_(2)level nor themeanageof air,taken in isolation,delineates all high-exposure zones.We therefore recommend that ventilation design be informed by a composite diagnosis that couples gas data,size-resolved particle measurements,and rapid CFD appraisal.
文摘This paper presents both analytical and numerical studies of the conservative Sawada-Kotera equation and its dissipative generalization,equations known for their soliton solutions and rich chaotic dynamics.These models offer valuable insights into nonlinear wave propagation,with applications in fluid dynamics and materials science,including systems such as liquid crystals and ferrofluids.It is shown that the conservative Sawada-Kotera equation supports traveling wave solutions corresponding to elliptic limit cycles,as well as two-and three-dimensional invariant tori surrounding these cycles in the associated ordinary differential equation(ODE)system.For the dissipative generalized Sawada-Kotera equation,chaotic wave behavior is observed.The transition to chaos in the corresponding ODE systemfollows a universal bifurcation scenario consistent with the framework established by FShM(Feigenbaum-Sharkovsky-Magnitskii)theory.Notably,this study demonstrates for the first time that the conservative Sawada-Kotera equation can exhibit complex quasi-periodic wave solutions,while its dissipative counterpart admits an infinite number of stable periodic and chaotic waveforms.
基金supported by the National Natural Science Foundation of China(Project No.52166004)the National Key Research and Development Program of China(Project No.2022YFC3902000)+2 种基金the Major Science and Technology Special Project of Yunnan Province(Project Nos.202202AG050007202202AG050002)the Research on the Development of Complete Sets of Technology for Extraction of Aromatic Substances from Tobacco Waste and Its Application,Applied Research-Pyrolysis Process Technology Research(2023QT01).
文摘In modern engineering,enhancing boiling heat transfer efficiency is crucial for optimizing energy use and several industrial processes involving different types of materials.This study explores the enhancement of pool boiling heat transfer potentially induced by combining perforated copper particles on a heated surface with a sodium dodecyl sulfate(SDS)surfactant in saturated deionized water.Experiments were conducted at standard atmospheric pressure,with heat flux ranging from 20 to 100 kW/m2.The heating surface,positioned below the layer of freely moving copper beads,allowed the particle layer to shift due to liquid convection and steam nucleation.The study reports on the influence of copper bead diameter(2,3,4,and 5 mm),particle quantity,arrangement,and SDS concentration(20,200,and 500 ppm).It is shown that the combination of 5 mm particles and a 500 ppm SDS concentration can yield a remarkable 139%improvement in heat transfer efficiency.As demonstrated by direct flow visualization,bubble formation occurs primarily in the gaps between the particles and the heated surface,with the presence of SDS reducing bubble size and accelerating bubble detachment.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus.It is demonstrated that the librational liquefaction of the granular material results in pattern formation.This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force.The inertial wave induces vortical fluid flow which entrains particles from rest and forms eroded areas that are equidistant from each other along the axis of rotation.Theoretical analysis and experiments demonstrate that a liquefied layer of granular material oscillates with a radian frequency equal to the angular velocity of the annulus and interacts with the inertial wave it excites.The new phenomenon of libration-induced pattern formation is of practical interest as it can be used to control multiphase flows and mass transfer in rotating containers in a variety of industrial processes.
基金financially supported by Science and Technology Project of Quzhou(Grant Nos.2023K256,2023NC08)Research Grants Program of Department of Education of Zhejiang Province(No.Y202455709)+1 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LZY21E050001)University-Enterprise Cooperation Program for Visiting Engineers in Higher Education Institutions in Zhejiang Province(No.FG2020215).
文摘This paper investigates the start-up and shutdown phases of a five-bladed closed-impeller centrifugal pump through experimental analysis,capturing the temporal evolution of its hydraulic performances.The study also predicts the transient characteristics of the pump under non-rated operating conditions to assess the accuracy of various machine learning methods in forecasting its instantaneous performance.Results indicate that the pump’s transient behavior in power-frequency mode markedly differs from that in frequency-conversion mode.Specifically,the power-frequency mode achieves steady-state values faster and exhibits smaller fluctuations before stabilization compared to the other mode.During the start-up phase,as the steady-state flow rate increases,inlet and outlet pressures and head also rise,while torque and shaft power decrease,with rotational speed remaining largely unchanged.Conversely,during the shutdown phase,no significant changes were observed in torque,shaft power,or rotational speed.Six machine learning models,including Gaussian Process Regression(GPR),Decision Tree Regression(DTR),and Deep Learning Networks(DLN),demonstrated high accuracy in predicting the hydraulic performance of the centrifugal pump during the start-up and shutdown phases in both power-frequency and frequency-conversion conditions.The findings provide a theoretical foundation for improved prediction of pump hydraulic performance.For instance,when predicting head and flow rate during power-frequency start-up,GPR achieved absolute and relative errors of 0.54 m(7.84%)and 0.21 m3/h(13.57%),respectively,while the Feedforward Neural Network(FNN)reported errors of 0.98 m(8.24%)and 0.10 m3/h(16.71%).By contrast,the Support Vector Machine Regression(SVMR)and Generalized Additive Model(GAM)generally yielded less satisfactory prediction accuracy compared to the other methods.
文摘This study introduces a Transformer-based multimodal fusion framework for simulating multiphase flow and heat transfer in carbon dioxide(CO_(2))–water enhanced geothermal systems(EGS).The model integrates geological parameters,thermal gradients,and control schedules to enable fast and accurate prediction of complex reservoir dynamics.The main contributions are:(i)development of a workflow that couples physics-based reservoir simulation with a Transformer neural network architecture,(ii)design of physics-guided loss functions to enforce conservation of mass and energy,(iii)application of the surrogate model to closed-loop optimization using a differential evolution(DE)algorithm,and(iv)incorporation of economic performance metrics,such as net present value(NPV),into decision support.The proposed framework achieves root mean square error(RMSE)of 3–5%,mean absolute error(MAE)below 4%,and coefficients of determination greater than 0.95 across multiple prediction targets,including production rates,pressure distributions,and temperature fields.When compared with recurrent neural network(RNN)baselines such as gated recurrent units(GRU)and long short-term memory networks(LSTM),as well as a physics-informed reduced-order model,the Transformer-based approach demonstrates superior accuracy and computational efficiency.Optimization experiments further show a 15–20%improvement in NPV,highlighting the framework’s potential for real-time forecasting,optimization,and decision-making in geothermal reservoir engineering.
基金supported by the National Natural Science Foundation of China(No.52474047).
文摘Condensate gas reservoirs have attracted increasing attention in recent years due to their significant development potential and dual value from both natural gas and condensate oil.However,their exploitation is often hindered by the dual challenges of retrograde condensation and water invasion,which can markedly reduce recovery factors.CO_(2) injection offers a promising solution by alleviating condensate blockage,suppressing water influx,and simultaneously enabling geological CO_(2) storage.Accordingly,research on optimizing CO_(2) injection to mitigate formation damage is critical for the efficient development and management of edge-and bottom-water condensate gas reservoirs.In this study,a long-core displacement mechanism model was constructed using CMG-GEMTM andWinPropTM.The model simulates reservoir depletion from initial conditions(41.2 MPa,102.5℃)to the current reservoir pressure(13.5 MPa),followed by gas injection.It was then upscaled to the edge-and bottom-water reservoir scale to capture complex fluid phase behavior,enabling a multi-factor coupled optimization of CO_(2) injection strategies.Model reliability was verified through comparison with core experimental results.Subsequently,the effects of geological parameters(e.g.,reservoir permeability and rhythmic heterogeneity)and engineering parameters(e.g.,injection pressure and rate)on reservoir performance were systematically evaluated.The results indicate that appropriate target zone selection and optimization of injection pressure and rate—avoiding formation fracturing and preventing gas channeling—can substantially improve reservoir development outcomes.Applying this approach to the K Gas Reservoir,the optimal strategy involved injecting CO_(2) at a rate of 5×10^(4) m^(3)/d,restoring pressure to 22.5 MPa in a composite rhythmic reservoir with an average permeability of 10 mD.This scheme increased the condensate oil recovery factor by 18.7 percentage points(from 43.9%to 60.9%)while reducing the water-cut rise rate by approximately 34%.
文摘The present review explores the promising role of nanofluids and related hybrid variants in enhancing the efficiencyof flat tube car radiators.As vehicles become more advanced and demand better thermal performance,traditional coolants are starting to fall short.Nanofluids,which involve tiny nanoparticles dispersed into standardcooling liquids,offer a new solution by significantly improving heat transfer capabilities.The article categorizesthe different types of nanofluids(ranging from those based on metals and metal oxides to carbon materials andhybrid combinations)and examines their effects on the improvement of radiator performance.General consensusexists in the literature that nanofluids can support better heat dissipation and enable accordingly the developmentof smaller and lighter radiators,which require less coolant and allow more compact vehicle designs.However,thisreview demonstrates that the use of nanofluids does not come without challenges.These include the long-termstability of these fluids and material compatibility issues.A critical discussion is therefore elaborated about thegaps to be filled and the steps to be undertaken to promote and standardize the use of these fluids in the industry.
文摘A precise diagnosis of the complex post-fracturing characteristics and parameter variations in tight gas reservoirs is essential for optimizing fracturing technology,enhancing treatment effectiveness,and assessing post-fracturing production capacity.Tight gas reservoirs face challenges due to the interaction between natural fractures and induced fractures.To address these issues,a theoretical model for diagnosing fractures under varying leak-off mechanisms has been developed,incorporating the closure behavior of natural fractures.This model,grounded in material balance theory,also accounts for shut-in pressure.The study derived and plotted typical G-function charts,which capture fracture behavior during closure.By superimposing the G-function in the closure phase of natural fractures with pressure derivative curves,the study explored how fracture parameters—including leak-off coefficient,fracture area,closure pressure,and closure time—impact these diagnostic charts.Findings show that variations in natural fracture flexibility,fracture area,and controlling factors influence the superimposed G-function pressure derivative curve,resulting in distinctive“concave”or“convex”patterns.Field data from Well Y in a specific tight gas reservoir were used to validate the model,confirming both its reliability and practicality.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘Thermal vibrational convection(TVC)refers to the time-averaged convection of a non-isothermal fluid subjected to oscillating force fields.It serves as an effective mechanism for heat transfer control,particularly under microgravity conditions.A key challenge in this field is understanding the effect of rotation on TVC,as fluid oscillations in rotating systems exhibit unique and specific characteristics.In this study,we examine TVC in a vertical flat layer with boundaries at different temperatures,rotating around a horizontal axis.The distinctive feature of this study is that the fluid oscillations within the cavity are not induced by vibrations of the cavity itself,but rather by the gravity field,giving them a tidal nature.Our findings reveal that inertial waves generated in the rotating layer qualitatively alter the TVC structure,producing time-averaged flows in the form of toroidal vortices.Experimental investigations of the structure of oscillatory and time-averaged flows,conducted using Particle Image Velocimetry(PIV)for flow velocity visualization,are complemented by theoretical calculations of inertial modes in a cavity with this geometry.To the best of our knowledge,this study represents the first of its kind.The agreement between experimental results and theoretical predictions confirms that the formation of convective structures in the form of toroidal vortices is driven by inertial waves induced by the gravity field.A decrease in the rotational velocity leads to a transformation of the convective structures,shifting from toroidal vortices of inertial-wave origin to classical cellular TVC.We present dimensionless parameters that define the excitation thresholds for both cellular convection and toroidal structures.
基金supported by the National Natural Science Foundation of China(grant number:52006061)the Key R&D Program of Hunan Province(grant number:2024AQ2001)+2 种基金Scientific Research Program of Hunan Provincial Department of Education(grant number:22B0840)Natural Science Foundation of Hunan Province(grant number:2023JJ50483)Hunan University of Humanities,Science and Technology Graduate Student Research and Innovation Program(ZSCX2024Y06,ZSCX2024Y01).
文摘To address the challenges of poor surface quality and high energy consumption in marble cutting,this study introduces an auxiliary abrasive jet cutting technology enhanced by the use of polyacrylamide(PAM)as a dragreducing additive.The effects of feed rate(50-300 mm/min),polymer concentration(0-0.5 g/L),and nozzle spacing(4-12 mm)on kerf width and surface roughness are systematically investigated through an orthogonal experimental design.Results reveal that feed rate emerges as themost significant factor(p<0.01),followed by PAM concentration and nozzle spacing.The optimal set of parameters,comprising a 200 mm/min feed rate,0.3 g/L PAM concentration,and 6mmnozzle spacing,achieves the narrowest kerf width(0.867 mm)and the lowest surface roughness(10.220μm).Analysis of the underlying mechanisms demonstrates that PAMenhances the energy efficiency of the jet by suppressing turbulent pulsations and increasing fluid viscoelasticity,thereby minimizing energy loss during the cutting process.
基金supported by the Ministry of Education of the Russian Federation(Project No.1023032300071-6-2.3.1).
文摘An experimental investigation of the dynamics of the interface between two low-viscosity fluids with high density contrast oscillating in a fixed vertical slotted channel has been conducted.It has been found that as the amplitude of the liquid column oscillations increases,parametric oscillations of the interface are excited in the form of a standing wave located in the channel plane.In particular,depending on the interfacial tension,the standing waves have a frequency equal to that of liquid piston oscillations(harmonic response),or half of the frequency of oscillations of the liquid column in the channel(subharmonic response).The detected type of instability has a gravitational-capillary nature and is analogous to Faraday waves.The analysis of the overcritical dynamics of wave oscillations indicates that interfacial tension plays a crucial role in determining the type of parametric instability.At high interfacial tension,only synchronous(harmonic)wave modes are observed,and the threshold of the wave excitation is determined by the amplitude of piston oscillations of the liquid column.In this case,the oscillation acceleration does not play a role and has a small value in the threshold of the synchronous mode response.In the case of weak surface tension,subharmonic oscillations are observed.The threshold for the development of these oscillations is determined by the dimensionless acceleration of the oscillating liquid column and remains almost constant with variations in the dimensionless frequency of oscillations.At moderate values of interfacial tension(in the region of moderate dimensionless frequencies),a synchronous wave mode emerges in the stability threshold of the oscillating interface.As the dimensionless acceleration is increased further,a subharmonic mode is excited.The growth of subharmonic oscillations occurs against the background of harmonic wave oscillations,with the oscillations of the interface representing a combination of two standing waves.
基金Science and Technology Planning Project of Sichuan Province with Grant No.2023YFS0429supported by Science and Technology Project of China Road and Bridge Corporation with Grant No.P2220447+1 种基金supported by Foundation of Xinjiang Institute of Engineering 2024(Grant No.2024xgy072605)supported by Sichuan Natural Science Foundation Project(Grant No.2024NSFSC0162).The numerical calculations in this study have been done on Hefei advanced computing center.
文摘In recent years,tuned liquid dampers(TLDs)have attracted significant research interest;however,overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads.In particular,it remains unclear whether the water in aqueducts—common water-diversion structures in many countries—can serve as an effective TLD.This study investigates the generation mechanisms of sloshing loads during the first-order transverse resonance of water in a U-shaped aqueduct using a two-dimensional(2D)numerical model.The results reveal that,at the equilibrium position,the free surface difference between the left and right walls,the horizontal force on the aqueduct,and the fluctuating component of the vertical force all reach their maxima,with energy predominantly stored as potential energy.At the maximum displacement position,the surface difference and horizontal force drop to zero,while the fluctuating vertical force attains its minimum and energy shifts primarily to kinetic form.At this stage,static pressure is governed solely by the vertical convective acceleration,whereas at equilibrium it is closely linked to both the free surface difference and vertical local acceleration of the water.This dynamic energy exchange generates vertical force oscillations even when the free surface appears nearly symmetric.
基金funded by the Ministry of Education of the Russian Federation within the framework of a state assignment,number 1023032300071-6-2.3.1.
文摘Time-averaged thermal convection in a rotating horizontal annulus with a higher temperature at its inner boundary is studied.The centrifugal force plays a stabilizing role,while thermal convection is determined by the“thermovibrational mechanism”.Convective flow is excited due to oscillations of a non-isothermal rotating fluid.Thermal vibrational convectionmanifests in the form of two-dimensional vortices elongated along the axis of rotation,which develop in a threshold manner with an increase in the amplitude of fluid oscillations.The objective of the present study is to clarify the nature of another phenomenon,i.e.,three-dimensional convective vortices observed in the experiments both before the excitation of the convection described above and in the supercritical region.The experimental study of the oscillatory and the time-averaged flow fields by particle image velocimetry is accompanied by the theoretical research of inertial waves.It is found that three-dimensional fluid flows owe their origin to inertial waves.This is confirmed by a high degree of agreement between the experimental and theoretical results.Experiments with cavities of different lengths indicate that the vortices are clearly seen in cavities thatmeet the conditions of resonant excitation of inertial modes.Furthermore,the length of the cavity has no effect on heat transfer,which is explained by the comparatively low intensity of the wave-induced flows.The main contribution to heat transfer is due to vortices elongated along the axis of rotation.The novel results are of significant practical importance in various fields.