期刊文献+

为您找到了以下期刊:

共找到508篇文章
< 1 2 26 >
每页显示 20 50 100
Editorial for special issue on ADRC:new ADRC developments in Ibero-America
1
作者 Hebertt Sira-Ramírez Mario Ramírez-Neria +2 位作者 Alberto Luviano-Juárez John Cortés-Romero Jaime González-Sierra control theory and technology 2025年第3期341-344,共4页
1 Active Disturbance Rejection Control(ADRC):a brief survey Since its inception,Active Disturbance Rejection Control(ADRC)has re-centered feedback controller design around two fundamental ideas—along with a consequen... 1 Active Disturbance Rejection Control(ADRC):a brief survey Since its inception,Active Disturbance Rejection Control(ADRC)has re-centered feedback controller design around two fundamental ideas—along with a consequential design simplification:real-time estimation and online cancellation of the“total disturbance”conceived as the lumped effect of unknown internal dynamics and external inputs.The simplified design then proceeds in a customary fashion for the ideally remaining system model,which is devoid of the total disturbance. 展开更多
关键词 feedback controller design active disturbance rejection control ADRC simplified design active disturbance rejection control adrc Ibero America disturbance rejection control adrc design simplification real time
原文传递
Cooperative RISE learning-based circumnavigation of networked unmanned aerial vehicles with collision avoidance and connectivity preservation
2
作者 Jawhar Ghommam Amani Ayeb +1 位作者 Brahim Brahmi Maarouf Saad control theory and technology 2025年第2期266-293,共28页
In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial... In this paper, a bearing-based three-dimensional self-localization and distributed circumnavigation with connectivity preservation and collision avoidance are investigated for a group of quadrotor-type unmanned aerial vehicles (UAVs). A leader–follower structure is adopted, wherein the leader moves with reference dynamics (a target). Different from the existing approaches that necessitate full knowledge of the time-varying reference trajectory, in this paper, it is assumed that only some vehicles (at least one) have access to the bearing relative to the target, and all other vehicles are equipped with sensors capable of measuring the bearings relative to neighboring vehicles. In this paper, a consensus estimator is proposed to estimate the global position for each vehicle using relative bearing measurements and an estimate of neighboring vehicles received from a direct communication network. Then, a continuous robust integral of the sign of the error (RISE) control approach is effectively integrated with the distributed vector field approach to ensure UAV formation orbiting around the moving target while avoiding obstacles and maintaining network links within available communication ranges. In contrast to the classical RISE control rule, a \(\tanh (\cdot )\) function is used instead of the \(\text {sgn}(\cdot )\) function to further decrease the high-gain feedback and to obtain a smoother control signal. Furthermore, by using the localized radial basis function (RBF) neural networks (NNs) in a cooperative way, deterministic learning theory is employed to accurately identify/learn model uncertainties resulting from the attitude dynamics. The convergence of the entire closed-loop system is illustrated using the Lyapunov theory and is shown to be uniformly ultimately bounded. Finally, numerical simulations show the effectiveness of the proposed approach. 展开更多
关键词 RISE-based backstepping approach Input constraints Auxiliary compensated systems Circumnavigation Distributed localization Collision avoidance Vector-field potential
原文传递
On Mason Reset Based control and the scale of integration
3
作者 Yu Hu Zhiqiang Gao control theory and technology 2025年第3期479-493,共15页
Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of thr... Mason Reset(MR),a groundbreaking invention by Clesson E.Mason in 1930 that later became a part of“the universal approach to process control instrumentation”,is revisited in this paper and is shown to consists of three actions:fast(errorcorrection),medium(negative feedback for expanded proportional band)and slow(reset for zero steady-state error).The focus of the paper is on the reset action,generated from a positive feedback loop,and its underlying principles with profound implications to our understanding and practice of automatic control,both basic and advanced.For example,we note that reset control and integral control,contrary to common belief,differ fundamentally in design principle and in practicality.Such difference comes to a head in the event of integrator windup:while reset windup is a problem of actuator saturation,the integrator windup is a runaway situation due to controller instability.In fact,there is no advantage gained in replacing MR with an integrator.In other words,one should not integrate the error directly as in standard PID,since doing so makes the closed-loop system internally unstable.With MR-based control formulated in this paper,there is no such threat of instability and,therefore,no need for any anti-windup mechanisms.Furthermore,the integral control is made scalable in this framework as a tradeoff between the steady-state accuracy and the controller stability.This leads to a novel MR-based control design,scalable in gain and in time to accommodate various process characteristics and design specifications.Simple in construction and transparent in principle,this MR-based control,as a basic framework of design,is readily deployable in scale. 展开更多
关键词 Mason Reset Scale of integration Gain scale Time scale Reset windup Integrator windup Mason Reset Based control
原文传递
Output feedback control of nonlinear time-delay systems with multiple uncertainties via an event-triggered strategy
4
作者 Weiyong Yu Qi Chen +2 位作者 Hongbing Zhou Xiang An Qiang Liu control theory and technology 2025年第2期321-340,共20页
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses... This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective. 展开更多
关键词 Dynamic gain Event-triggered control Input matching uncertainty Nonlinear time-delay systems Output feedback Unknown measurement sensitivity
原文传递
Edge computing aileron mechatronics using antiphase hysteresis Schmitt trigger for fast flutter suppression
5
作者 Tangwen Yin Dan Huang Xiaochun Zhang control theory and technology 2025年第1期153-160,共8页
An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This ... An aileron is a crucial control surface for rolling.Any jitter or shaking caused by the aileron mechatronics could have catastrophic consequences for the aircraft’s stability,maneuverability,safety,and lifespan.This paper presents a robust solution in the form of a fast flutter suppression digital control logic of edge computing aileron mechatronics(ECAM).We have effectively eliminated passive and active oscillating response biases by integrating nonlinear functional parameters and an antiphase hysteresis Schmitt trigger.Our findings demonstrate that self-tuning nonlinear parameters can optimize stability,robustness,and accuracy.At the same time,the antiphase hysteresis Schmitt trigger effectively rejects flutters without the need for collaborative navigation and guidance.Our hardware-in-the-loop simulation results confirm that this approach can eliminate aircraft jitter and shaking while ensuring expected stability and maneuverability.In conclusion,this nonlinear aileron mechatronics with a Schmitt positive feedback mechanism is a highly effective solution for distributed flight control and active flutter rejection. 展开更多
关键词 AILERON Edge computing Flutter suppression MECHATRONICS Nonlinear hysteresis control Positive feedback
原文传递
Robust control barrier functions based on active disturbance rejection control for adaptive cruise control
6
作者 Jaime Arcos-Legarda Andres Hoyos Hernán García Arias control theory and technology 2025年第3期454-463,共10页
The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, un... The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, unknown dynamics, and external disturbances. The proposed method combines control barrier functions and control Lyapunov functions with a nonlinear extended state observer to produce a robust and safe control strategy for dynamic systems subject to uncertainties and disturbances. This control strategy employs an optimization-based control, supported by the disturbance estimation from a nonlinear extended state observer. Using a quadratic programming algorithm, the controller computes an optimal, stable, and safe control action at each sampling instant. The effectiveness of the proposed approach is demonstrated through numerical simulations of a safety-critical interconnected adaptive cruise control system. 展开更多
关键词 Control barrier functions Active disturbance rejection control Extended state observer Control Lyapunov function Optimization-based control Quadratic programming
原文传递
Cascade explicit tube model predictive controller:application for a multi-robot system
7
作者 Ehsan Soleimani Amirhossein Nikoofard Erfan Nejabat control theory and technology 2025年第2期237-252,共16页
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),... In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain. 展开更多
关键词 Explicit model predictive control(MPC) Tube MPC Cascade controller QUADROTOR Multi-agent system Distributed formation control
原文传递
Robust-optimal control of electromagnetic levitation system with matched and unmatched uncertainties:experimental validation
8
作者 Amit Pandey Dipak M.Adhyaru control theory and technology 2025年第1期28-48,共21页
The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the u... The electromagnetic levitation system(EMLS)serves as the most important part of any magnetic levitation system.However,its characteristics are defined by its highly nonlinear dynamics and instability.Furthermore,the uncertainties in the dynamics of an electromagnetic levitation system make the controller design more difficult.Therefore,it is necessary to design a robust control law that will ensure the system’s stability in the presence of these uncertainties.In this framework,the dynamics of an electromagnetic levitation system are addressed in terms of matched and unmatched uncertainties.The robust control problem is translated into the optimal control problem,where the uncertainties of the electromagnetic levitation system are directly reflected in the cost function.The optimal control method is used to solve the robust control problem.The solution to the optimal control problem for the electromagnetic levitation system is indeed a solution to the robust control problem of the electromagnetic levitation system under matched and unmatched uncertainties.The simulation and experimental results demonstrate the performance of the designed control scheme.The performance indices such as integral absolute error(IAE),integral square error(ISE),integral time absolute error(ITAE),and integral time square error(ITSE)are compared for both uncertainties to showcase the robustness of the designed control scheme. 展开更多
关键词 Nonlinear system Robust control Optimal control HJB equation Lyapunov stability Electromagnetic levitation system
原文传递
Application of feedforward and recurrent neural networks for model-based control systems
9
作者 Marek Krok Wojciech P.Hunek +2 位作者 Szymon Mielczarek Filip Buchwald Adam Kolender control theory and technology 2025年第1期91-104,共14页
In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the l... In this paper,a new study concerning the usage of artificial neural networks in the control application is given.It is shown,that the data gathered during proper operation of a given control plant can be used in the learning process to fully embrace the control pattern.Interestingly,the instances driven by neural networks have the ability to outperform the original analytically driven scenarios.Three different control schemes,namely perfect,linear-quadratic,and generalized predictive controllers were used in the theoretical study.In addition,the nonlinear recurrent neural network-based generalized predictive controller with the radial basis function-originated predictor was obtained to exemplify the main results of the paper regarding the real-world application. 展开更多
关键词 Predictive control Linear-quadratic control Inverse problems Feedforward network Recurrent neural network OPTIMIZATION
原文传递
Adaptive optimal control system design for semi-active suspension system by supposing variable parameters under exogenous road disturbance
10
作者 Viet Nguyen Hoang Feiqi Deng Chi Nguyen Van control theory and technology 2025年第1期64-73,共10页
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de... This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article. 展开更多
关键词 Quarter car suspension system Semi-active suspension Adaptive control Optimal control Linear-quadratic regulator Exogenous disturbance
原文传递
Effective convolution mixed Transformer Siamese network for robust visual tracking
11
作者 Lin Chen Yungang Liu Yuan Wang control theory and technology 2025年第2期221-236,共16页
Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limit... Siamese tracking algorithms usually take convolutional neural networks(CNNs)as feature extractors owing to their capability of extracting deep discriminative features.However,the convolution kernels in CNNs have limited receptive fields,making it difficult to capture global feature dependencies which is important for object detection,especially when the target undergoes large-scale variations or movement.In view of this,we develop a novel network called effective convolution mixed Transformer Siamese network(SiamCMT)for visual tracking,which integrates CNN-based and Transformer-based architectures to capture both local information and long-range dependencies.Specifically,we design a Transformer-based module named lightweight multi-head attention(LWMHA)which can be flexibly embedded into stage-wise CNNs and improve the network’s representation ability.Additionally,we introduce a stage-wise feature aggregation mechanism which integrates features learned from multiple stages.By leveraging both location and semantic information,this mechanism helps the SiamCMT to better locate and find the target.Moreover,to distinguish the contribution of different channels,a channel-wise attention mechanism is introduced to enhance the important channels and suppress the others.Extensive experiments on seven challenging benchmarks,i.e.,OTB2015,UAV123,GOT10K,LaSOT,DTB70,UAVTrack112_L,and VOT2018,demonstrate the effectiveness of the proposed algorithm.Specially,the proposed method outperforms the baseline by 3.5%and 3.1%in terms of precision and success rates with a real-time speed of 59.77 FPS on UAV123. 展开更多
关键词 Visual tracking Siamese network TRANSFORMER Feature aggregation Channel-wise attention
原文传递
Modeling and active disturbance rejection control of a tilt-rotor UAV
12
作者 Victor-Gabriel Sánchez-Meza Yair Lozano-Hernández +2 位作者 Norma Lozada-Castillo Mario Ramírez-Neria Alberto Luviano-Juárez control theory and technology 2025年第3期563-577,共15页
In this article,the dynamical model and trajectory tracking problem for a tilt-rotor unmanned aerial vehicle is tackled through linear Active Disturbance Rejection Control(ADRC)applied on the tangent linearized system... In this article,the dynamical model and trajectory tracking problem for a tilt-rotor unmanned aerial vehicle is tackled through linear Active Disturbance Rejection Control(ADRC)applied on the tangent linearized system.To apply the ADRC scheme,it is considered the subsystem without the Y-axis component,which is differentially flat and whose flat outputs are obtained using the Kronecker matrix.Numerical assessment using as system parameters the ones of a scale prototype is provided to show the effectiveness of the proposal leading to accurate tracking results using admissible control values for an experimental scenario. 展开更多
关键词 Tilt-rotor ADRC Tangent linearization Multivariable systems Unmanned aerial vehicles
原文传递
Smooth switching mechanism-based adaptive integral terminal SMC for PMSM servo system with stator voltage saturation and unknown disturbances
13
作者 Xiangxiang Meng Haisheng Yu +1 位作者 Jie Zhang Qing Yang control theory and technology 2025年第2期294-309,共16页
This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanis... This article investigates the anti-disturbance and stabilization problems for the nonlinear uncertain permanent magnet synchronous motor(PMSM)with stator voltage saturation and unknown load.A smooth switching mechanism is presented to structure the adaptive integral terminal sliding mode control(SMC)strategy.The control design consists of compensation control and nominal control,which improves the rapidity and accuracy of trajectory tracking.The smooth saturation model based on the error function is applied to approximate the voltage saturation phenomenon.Additionally,to deal with the adverse effects of various unknown disturbances,including model parameter uncertainties and unknown external load disturbances,an improved disturbance observer(DO)is proposed.This observer effectively suppresses the fluctuations caused by fixed gain during the starting period of the system.Finally,the experimental results under different conditions show that the proposed strategy has good tracking and disturbance suppression performances. 展开更多
关键词 Smooth switching mechanism Integral terminal SMC PMSM servo system Disturbance suppression Stator voltage saturation
原文传递
Integral terminal sliding mode augmented finite-time visual servo control of omni-directional mobile manipulators
14
作者 Yuanji Liu Tianyu Zhu +1 位作者 Qingdu Li Jianwei Zhang control theory and technology 2025年第2期193-206,共14页
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi... This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm. 展开更多
关键词 Omni-directional mobile manipulators Nonlinear kinematic model Mismatched disturbances Integral terminal sliding mode control Finite-time control
原文传递
Frugalmodel predictive control and active disturbance rejection for laser beam steering systems
15
作者 Rafael Isaac Vázquez-Cruz Ernesto Castellanos-Velasco JoséFermi Guerrero-Castellanos control theory and technology 2025年第3期513-528,共16页
This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo... This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited. 展开更多
关键词 Frugal model predictive control(FMPC) Active disturbance rejection control(ADRC) Laser beam steering system(LBS) Real-time application Constrained systems
原文传递
Reduction of losses in electric power distribution system-dynamic reconfiguration case study
16
作者 Branimir Novoselnik Drago Bago +1 位作者 Jadranko Matuško Mato Baotić control theory and technology 2025年第1期49-63,共15页
This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a n... This paper deals with reduction of losses in electric power distribution system through a dynamic reconfiguration case study of a grid in the city of Mostar,Bosnia and Herzegovina.The proposed solution is based on a nonlinear model predictive control algorithm which determines the optimal switching operations of the distribution system.The goal of the control algorithm is to find the optimal radial network topology which minimizes cumulative active power losses and maximizes voltages across the network while simultaneously satisfying all system constraints.The optimization results are validated through multiple simulations(using real power demand data collected for a few characteristic days during winter and summer)which demonstrate the efficiency and usefulness of the developed control algorithm in reducing the grid losses by up to 14%. 展开更多
关键词 Nonlinear model predictive control Dynamic reconfiguration Power distribution system Mixed-integer programming Real-life case study
原文传递
Data-driven adaptive distributed optimal disturbance rejection control of frequency regulation in nonlinear power systems
17
作者 Changhui Yu Xiao Qi +4 位作者 Weixiong Wu Hui Deng Ming Du Wenguang Zhang Tianyu Wang control theory and technology 2025年第3期423-436,共14页
With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic ef... With the increasing penetration of renewable energy resources in power systems,conventional timescale separated load frequency control(LFC)and economic dispatch may degrade frequency performance and reduce economic efficiency.This paper proposes a novel data-driven adaptive distributed optimal disturbance rejection control(DODRC)method for real-time economic LFC problem in nonlinear power systems.Firstly,a basic DODRC method is proposed by integrating the active disturbance rejection control method and the partial primal–dual algorithm.Then,to deal with the tie-line power flow constraints,the logarithmic barrier function is employed to reconstruct the Lagrange function to obtain the constrained DODRC method.By analyzing the sensitivity of the uncertain parameters of power systems,a data-driven adaptive DODRC method is finally proposed with a neural network.The effectiveness of the proposed method is demonstrated by experimental results using real-time equipment. 展开更多
关键词 Load frequency control Economic dispatch Active disturbance rejection control Tie-line thermal constraints Uncertain parameters
原文传递
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
18
作者 Siyu Xie Die Gan Zhixin Liu control theory and technology 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
LADRC method referring to the integral chain model:design of dual-loop disturbance compensation and engineering verification
19
作者 Yao Qin Hailin Hu Jie Yang control theory and technology 2025年第3期364-377,共14页
To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)... To address the issue of disturbance compensation deviation in linear active disturbance rejection control(LADRC),a linear active disturbance rejection control method with reference to the integral chain model(LADRC-R)is proposed.By constructing an ideal control reference model,a dynamic correlation between output deviation and uncompensated disturbances is established,and a dual-loop compensation mechanism is designed.Based on theoretical analysis and frequency-domain characteristics of typical first/second-order systems,this method maintains the parameter-tuning advantages of LADRC while reducing disturbance effects by 50%and introducing no phase lag during low-frequency disturbance suppression.Simulations on second-order systems verify its robustness under parameter perturbations,gain mismatch,and complex disturbances,and an optimized design scheme for the deviation compensator is proposed to suppress discontinuous measurement noise interference.Finally,the engineering effectiveness of this method in precision motion control is validated on an electromagnetic suspension platform,providing a new approach to improving the control performance of LADRC in environments with uncertain disturbances. 展开更多
关键词 Linear active disturbance rejection control Disturbance compensation deviation Referring to integral chain model Dual-loop compensation ROBUSTNESS
原文传递
On the stability condition of active disturbance rejection control with time-varying bandwidth observer
20
作者 Depeng Song Sen Chen +1 位作者 Wenchao Xue Zhiliang Zhao control theory and technology 2025年第3期464-478,共15页
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to... With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability. 展开更多
关键词 Active disturbance rejection control Time-varying bandwidth Extended state observer Closed-loop stability Rate of change
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部