期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用RBF神经网络预测沸石分子筛对水分子的吸附能力
1
作者 乔宝韵 乔佳 +2 位作者 张军 谢春旭 赵伟立 《航天器环境工程》 2025年第1期109-116,共8页
针对空间望远镜水污染问题,本研究选取4种常见的沸石分子筛材料(ZSM-5、ZSM-22、MCM-41和SAPO-11)为研究对象,利用原子氧和紫外综合模拟实验设备,测试了不同环境下沸石分子筛对水分子的吸附性能,并结合实验结果和机器学习技术,构建了一... 针对空间望远镜水污染问题,本研究选取4种常见的沸石分子筛材料(ZSM-5、ZSM-22、MCM-41和SAPO-11)为研究对象,利用原子氧和紫外综合模拟实验设备,测试了不同环境下沸石分子筛对水分子的吸附性能,并结合实验结果和机器学习技术,构建了一个基于径向基函数(RBF)神经网络的污染物吸附能力预测模型。分析结果表明,该模型能够有效预测分子筛的吸附性能,其决定系数R^(2)均大于0.99,平均绝对误差和均方根误差均达到10^(-5)量级,优于长短期记忆(LSTM)神经网络、卷积神经网络(CNN)、基于反向传播(BP)算法训练的神经网络等模型。该模型的建立解决了仅通过实验方法研究分子筛吸附性能耗时耗力的难题,并为构建更复杂的数据预估模型奠定了基础。 展开更多
关键词 空间望远镜 水污染控制 沸石分子筛 水分子吸附 机器学习 RBF神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部