Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter IL...Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.展开更多
为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:...为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:以氩气为工质,ECR中和器在体积流量0.8 m L/min时,88.6 V电压可引出103.8 m A的电子电流,工质利用效率和电子损耗分别为1.278 9 W/A和194.573 W/A;以氪气为工质,ECR中和器在体积流量0.6 m L/min时,75 V电压可引出108 m A电子电流,工质利用效率和电子产生损耗分别为1.783 2W/A和176.7 W/A。以氪气为工质的中和器性能明显优于氩气,但2种工质都可以满足ECR离子源中和离子束流的需要。展开更多
基金co-supported by the National Key R&D Program of China(No.2020YFC2201001)the Shenzhen Science and Technology Program,China(No.20210623091808026)。
文摘Ionic Liquid Electrospray Thrusters(ILETs)are well suited for micro-nano satellite applications due to their small size,low power consumption,and high specific impulse.However,the limited thrust of a single-emitter ILET restricts its use in space missions.To optimize the performance of ILETs and make them suitable for a wider range of space missions,we designed a Circular-emitter ILET(CILET)to convert a one-dimensional(point)emission into a twodimensional(line)emission.The CILET can self-organize multiple Taylor cones simultaneously.The cones were photographed and the axial emission currents were measured under different voltage and pressure difference conditions with a CILET experimental system.The emission can be divided into two stable states and one unstable state based on the flow and current characteristics.The current in Stable state Ⅰ increases non-linearly with the voltage,while that in Stable state Ⅱ is nearly linear with respect to the voltage.The number of cones increases with the voltage in stable states,while the cones become short and crowded under high-voltage conditions.The variation law of the number of cones can be explained with the self-organization theory.The variation in the current exhibits a good correlation with the number of cones.This study demonstrates the feasibility of circular emitters and experimentally indicates that the emission current is improved by approximately two orders of magnitude compared to that of a single capillary.
文摘为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:以氩气为工质,ECR中和器在体积流量0.8 m L/min时,88.6 V电压可引出103.8 m A的电子电流,工质利用效率和电子损耗分别为1.278 9 W/A和194.573 W/A;以氪气为工质,ECR中和器在体积流量0.6 m L/min时,75 V电压可引出108 m A电子电流,工质利用效率和电子产生损耗分别为1.783 2W/A和176.7 W/A。以氪气为工质的中和器性能明显优于氩气,但2种工质都可以满足ECR离子源中和离子束流的需要。