以碳纤维纱穿刺叠层铺放的缎纹碳布为纤维预制体,采用化学气相渗透法(Chemical Vapor Infiltration,CVI)结合先驱体浸渍裂解法(Precursor Infiltration and Pyrolysis,PIP)制备了细编穿刺C/C-SiC复合材料,在(3.2±0.32)MW/m^(2)氧-...以碳纤维纱穿刺叠层铺放的缎纹碳布为纤维预制体,采用化学气相渗透法(Chemical Vapor Infiltration,CVI)结合先驱体浸渍裂解法(Precursor Infiltration and Pyrolysis,PIP)制备了细编穿刺C/C-SiC复合材料,在(3.2±0.32)MW/m^(2)氧-乙炔焰作用下考核了C/C-SiC复合材料在碳布叠层和穿刺方向上的抗烧蚀性能,用扫描电子显微镜(Scanning Electron Microscope,SEM)对材料烧蚀表面及剖面的微观形貌进行表征与分析。结果表明:在60 s氧-乙炔焰考核后,C/C-SiC复合材料碳布叠层方向和穿刺方向的线烧蚀率分别为(1.67±0.23)μm/s和(2.39±0.22)μm/s,质量烧蚀率分别为(2.33±0.09)mg/s和(1.46±0.19)mg/s;当热流方向垂直于复合材料碳布叠层方向时,SiC基体氧化后生成的SiO2在碳纤维束及邻近基体表面形成较为连续的氧化膜,可有效阻挡高温热流对材料内部的进一步氧化烧蚀;当热流方向平行于复合材料碳布叠层方向时,穿刺纱中SiC分布较少,使得碳纤维在高温有氧环境下发生显著烧蚀,诱发穿刺纱端部出现明显氧化烧蚀凹坑;基体SiC分布方式和复合材料微结构特征是细编穿刺C/C-SiC复合材料在不同方向上表现出抗烧蚀性能差异的主要因素。展开更多
文摘以碳纤维纱穿刺叠层铺放的缎纹碳布为纤维预制体,采用化学气相渗透法(Chemical Vapor Infiltration,CVI)结合先驱体浸渍裂解法(Precursor Infiltration and Pyrolysis,PIP)制备了细编穿刺C/C-SiC复合材料,在(3.2±0.32)MW/m^(2)氧-乙炔焰作用下考核了C/C-SiC复合材料在碳布叠层和穿刺方向上的抗烧蚀性能,用扫描电子显微镜(Scanning Electron Microscope,SEM)对材料烧蚀表面及剖面的微观形貌进行表征与分析。结果表明:在60 s氧-乙炔焰考核后,C/C-SiC复合材料碳布叠层方向和穿刺方向的线烧蚀率分别为(1.67±0.23)μm/s和(2.39±0.22)μm/s,质量烧蚀率分别为(2.33±0.09)mg/s和(1.46±0.19)mg/s;当热流方向垂直于复合材料碳布叠层方向时,SiC基体氧化后生成的SiO2在碳纤维束及邻近基体表面形成较为连续的氧化膜,可有效阻挡高温热流对材料内部的进一步氧化烧蚀;当热流方向平行于复合材料碳布叠层方向时,穿刺纱中SiC分布较少,使得碳纤维在高温有氧环境下发生显著烧蚀,诱发穿刺纱端部出现明显氧化烧蚀凹坑;基体SiC分布方式和复合材料微结构特征是细编穿刺C/C-SiC复合材料在不同方向上表现出抗烧蚀性能差异的主要因素。