This article studies the nonlinear evolution of disturbance waves in supersonic nonparallel boundary layer flows by using nonlinear parabolic stability equations (NPSE). An accurate numerical method is developed to ...This article studies the nonlinear evolution of disturbance waves in supersonic nonparallel boundary layer flows by using nonlinear parabolic stability equations (NPSE). An accurate numerical method is developed to solve the equations and march the NPSE in a stable manner. Through computation,are obtained the curves of amplitude and disturbance shape function of harmonic waves. Especially are demonstrated the physical characteristics of nonlinear stability of various harmonic waves,including instantaneous stream wise vortices,spanwise vortices and Λ structure etc,and are used to study and analyze the mechanism of the transition process. The calculated results have evidenced the effectiveness of the proposed NPSE method to research the nonlinear stability of the supersonic boundary layers.展开更多
The paper presents an energy iterative method to determine the second critical velocity by comparing the time histories of the kinetic energy and the buckling deformation based on the finite element model of the impac...The paper presents an energy iterative method to determine the second critical velocity by comparing the time histories of the kinetic energy and the buckling deformation based on the finite element model of the impact system. To design anti-impact structures of the thin-wall cylindrical tubes with this new method, the cost of the experiment can be considerably reduced. The feasibility and validity of this method are demonstrated by a dropping hammer experiment. In addition, this paper deals with the influence of constrained damping layers on the anti-impact capability and energy-absorption of thin-wall cylindrical tubes. Results show that the constrained damping layers make the energy-absorption and the anti-impact capability increased comparing with the naked tubes; the thickness of the damping layer should be restricted in a range, or else the anti-impact capability will decrease with the increase of the damping layer thickness; for the constrained layer, the anti-impact capability will increase with the augment of its thickness.展开更多
基金National Natural Science Foundation of China (10772082)Doctoral Foundation of Ministry of Education of China (20070287005)
文摘This article studies the nonlinear evolution of disturbance waves in supersonic nonparallel boundary layer flows by using nonlinear parabolic stability equations (NPSE). An accurate numerical method is developed to solve the equations and march the NPSE in a stable manner. Through computation,are obtained the curves of amplitude and disturbance shape function of harmonic waves. Especially are demonstrated the physical characteristics of nonlinear stability of various harmonic waves,including instantaneous stream wise vortices,spanwise vortices and Λ structure etc,and are used to study and analyze the mechanism of the transition process. The calculated results have evidenced the effectiveness of the proposed NPSE method to research the nonlinear stability of the supersonic boundary layers.
文摘The paper presents an energy iterative method to determine the second critical velocity by comparing the time histories of the kinetic energy and the buckling deformation based on the finite element model of the impact system. To design anti-impact structures of the thin-wall cylindrical tubes with this new method, the cost of the experiment can be considerably reduced. The feasibility and validity of this method are demonstrated by a dropping hammer experiment. In addition, this paper deals with the influence of constrained damping layers on the anti-impact capability and energy-absorption of thin-wall cylindrical tubes. Results show that the constrained damping layers make the energy-absorption and the anti-impact capability increased comparing with the naked tubes; the thickness of the damping layer should be restricted in a range, or else the anti-impact capability will decrease with the increase of the damping layer thickness; for the constrained layer, the anti-impact capability will increase with the augment of its thickness.