UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between...UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unp...Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unpowered, the initial glide conditions (IGCs) are crucial for flight. This paper aims to find the optimal IGCs to improve the maneuverability and decrease the con- straints of HGVs. By considering the IGCs as experiment factors, we design an orthogonal table with three factors that have five levels each by using the orthogonal experimental design method. Thereafter, we apply the Gauss pseudospectral method to perform glide trajectory optimization by using each test of the orthogonal table as the initial condition. Based on the analytic hierarchy process, an integrated indicator is established to evaluate the IGCs, which synthesizes the indexes of the maneuverability and constraints. The integrated indicator is calculated from the trajectory opti- mization results. Finally, optimal IGCs and valuable conclusions are obtained by using range anal- ysis, variance analysis, and regression analysis on the integrated indicator.展开更多
基金This work was partially supported by the National Key Research and Development Program of China under Grant No.2018AAA0100400the Natural Science Foundation of Shandong Province under Grants Nos.ZR2020MF131 and ZR2021ZD19the Science and Technology Program of Qingdao under Grant No.21-1-4-ny-19-nsh.
文摘UAV marine monitoring plays an essential role in marine environmental protection because of its flexibility and convenience,low cost and convenient maintenance.In marine environmental monitoring,the similarity between objects such as oil spill and sea surface,Spartina alterniflora and algae is high,and the effect of the general segmentation algorithm is poor,which brings new challenges to the segmentation of UAV marine images.Panoramic segmentation can do object detection and semantic segmentation at the same time,which can well solve the polymorphism problem of objects in UAV ocean images.Currently,there are few studies on UAV marine image recognition with panoptic segmentation.In addition,there are no publicly available panoptic segmentation datasets for UAV images.In this work,we collect and annotate UAV images to form a panoptic segmentation UAV dataset named UAV-OUC-SEG and propose a panoptic segmentation method named PanopticUAV.First,to deal with the large intraclass variability in scale,deformable convolution and CBAM attention mechanism are employed in the backbone to obtain more accurate features.Second,due to the complexity and diversity of marine images,boundary masks by the Laplacian operator equation from the ground truth are merged into feature maps to improve boundary segmentation precision.Experiments demonstrate the advantages of PanopticUAV beyond the most other advanced approaches on the UAV-OUC-SEG dataset.
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120004)
文摘Hypersonic glide vehicles (HGVs) are launched by a solid booster and glide through the atmosphere at high speeds. HGVs will be important means for rapid long-range delivery in the future. Given that the glide is unpowered, the initial glide conditions (IGCs) are crucial for flight. This paper aims to find the optimal IGCs to improve the maneuverability and decrease the con- straints of HGVs. By considering the IGCs as experiment factors, we design an orthogonal table with three factors that have five levels each by using the orthogonal experimental design method. Thereafter, we apply the Gauss pseudospectral method to perform glide trajectory optimization by using each test of the orthogonal table as the initial condition. Based on the analytic hierarchy process, an integrated indicator is established to evaluate the IGCs, which synthesizes the indexes of the maneuverability and constraints. The integrated indicator is calculated from the trajectory opti- mization results. Finally, optimal IGCs and valuable conclusions are obtained by using range anal- ysis, variance analysis, and regression analysis on the integrated indicator.