Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer charact...Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.展开更多
针对航空电缆电弧故障引起的微小电流变化难以识别的问题,提出了一种基于Inception模块和双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)的交流串联电弧故障诊断方法。首先通过计算自相关系数的离散平方和(discrete...针对航空电缆电弧故障引起的微小电流变化难以识别的问题,提出了一种基于Inception模块和双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)的交流串联电弧故障诊断方法。首先通过计算自相关系数的离散平方和(discrete sum of squares of the atocorrelation coefficient)、信息熵(Shannon entropy)以及小波能量熵(wavelet energy entropy)提取原始电流数据的特征,将特征合并形成新的特征矩阵,对原始数据实现特征增强。之后Inception-BiLSTM网络利用特征矩阵进行学习,最后完成对电弧故障的诊断。为了验证模型在实际环境中的诊断性能,在充分考虑实际情况下,基于航空电缆电弧模拟实验平台进行了振动试验、应力实验以及潮湿电缆实验,并将实验数据整合作为检测样本。实验结果表明,本文方法对于识别电弧故障有着较高的准确度,可以达到99.69%。展开更多
文摘Aircraft disturbs the adjacent atmospheric environment in flight,forming spatial distribution features of atmospheric density that differ from the natural background,which may potentially be utilized as tracer characteristics to introduce new technologies for indirectly sensing the presence of aircraft.In this paper,the concept of a long-range aircraft detection based on the atmospheric disturbance density field is proposed,and the detection mode of tomographic imaging of the scattering light of an atmospheric disturbance flow field is designed.By modeling the spatial distribution of the disturbance density field,the scattered echo signal images of active light towards the disturbance field at long distance are simulated.On this basis,the characteristics of the disturbance optical signal at the optimal detection resolution are analyzed.The results show that the atmospheric disturbance flow field of the supersonic aircraft presents circular in the light-scattering echo images.The disturbance signal can be further highlighted by differential processing of the adjacent scattering images.As the distance behind the aircraft increases,the diffusion range of the disturbance signal increases,and the signal intensity and contrast with the background decrease.Under the ground-based observation conditions of the aircraft at a height of 10000 m,a Mach number of1.6,and a detection distance of 100 km,the contrast between the disturbance signal and the back-ground was 30 d B at a distance of one time from the rear of the fuselage,and the diffusion diameter of the disturbance signal was 50 m.At a distance eight times the length of the aircraft,the contrast decreased to 10 dB,and the diameter increased to 290 m.The contrast was reduced to 3 dB at a distance nine times the length of the aircraft,and the diameter was diffused to 310 m.These results indicate the possibility of long-range aircraft detection based on the characteristics of the atmospheric density field.
文摘针对航空电缆电弧故障引起的微小电流变化难以识别的问题,提出了一种基于Inception模块和双向长短期记忆网络(bidirectional long short-term memory, BiLSTM)的交流串联电弧故障诊断方法。首先通过计算自相关系数的离散平方和(discrete sum of squares of the atocorrelation coefficient)、信息熵(Shannon entropy)以及小波能量熵(wavelet energy entropy)提取原始电流数据的特征,将特征合并形成新的特征矩阵,对原始数据实现特征增强。之后Inception-BiLSTM网络利用特征矩阵进行学习,最后完成对电弧故障的诊断。为了验证模型在实际环境中的诊断性能,在充分考虑实际情况下,基于航空电缆电弧模拟实验平台进行了振动试验、应力实验以及潮湿电缆实验,并将实验数据整合作为检测样本。实验结果表明,本文方法对于识别电弧故障有着较高的准确度,可以达到99.69%。