针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝...针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝板的剩余强度试验得到铆钉孔直径、铆钉孔间距和裂纹萌生位置对结构剩余强度均有一定影响。其次,通过对裂纹萌生寿命分布进行随机抽样生成初始裂纹并使用组合法结合Paris公式,实现多裂纹随机扩展的模拟;在试验数据基础上,对传统的Irwin塑性区连通准则进行改进,发现改进的Irwin塑性区连通准则在孔间距大于10mm时的误差大大降低,并结合净截面屈服准则以获得更好的剩余强度预测结果;将随机性的裂纹萌生和扩展过程与确定性的剩余强度预测方法相结合,建立基于Monte-Carlo方法的MSD结构的失效概率预测模型。最后,通过算例分析,该模型能够得到MSD结构的失效概率曲线,实现结构安全性评估。结果表明MSD结构的失效概率会在短时间内迅速增加,需要在裂纹萌生寿命附近进行限制。展开更多
Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraf...Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraft based on Bayesian updating is presented.The method incorporates historical damage inspection data to determine the prior distribution of damage size,which is then updated with newly collected damage size data using Bayesian theory.Monte Carlo simulation is employed to investigate the probability of failure and estimate maintenance costs,considering various factors such as the frequency and timing of damage events,damage detection,structural strength,gust loads,and maintenance expenses throughout the lifecycle of composite structures.Safety and economic factors are considered to establish a lower threshold for repairs and an upper threshold for maintenance based on the occurrence of accidental impact damage.Verification of the effectiveness and feasibility of a quantitative assessment method for repair tolerance is conducted using damage statistics data from civil aircraft routes utilizing the structural skin panels of composite outer wing.The results demonstrate that the method proposed in conjunction with extensive simulations and full utilization of field damage inspection data can effectively simulate unexpected impact damage situations that may occur during civil aircraft service and evaluate the reliability and economic feasibility of the repair of structure.The research findings hold significant theoretical and practical value for the preparation of documents for continued airworthiness of composite structures,including structural repair manuals and maintenance programs.展开更多
文摘针对多部位损伤(Multiple Site Damage,MSD)结构安全性评估问题,通过Monte-Carlo方法对MSD结构的失效概率进行预测和分析。首先,基于多孔铝板的多裂纹萌生试验,得出裂纹萌生寿命服从对数正态分布,为多裂纹萌生分析提供支持;通过多孔铝板的剩余强度试验得到铆钉孔直径、铆钉孔间距和裂纹萌生位置对结构剩余强度均有一定影响。其次,通过对裂纹萌生寿命分布进行随机抽样生成初始裂纹并使用组合法结合Paris公式,实现多裂纹随机扩展的模拟;在试验数据基础上,对传统的Irwin塑性区连通准则进行改进,发现改进的Irwin塑性区连通准则在孔间距大于10mm时的误差大大降低,并结合净截面屈服准则以获得更好的剩余强度预测结果;将随机性的裂纹萌生和扩展过程与确定性的剩余强度预测方法相结合,建立基于Monte-Carlo方法的MSD结构的失效概率预测模型。最后,通过算例分析,该模型能够得到MSD结构的失效概率曲线,实现结构安全性评估。结果表明MSD结构的失效概率会在短时间内迅速增加,需要在裂纹萌生寿命附近进行限制。
基金the financial support provided by the Natural Science Foundation of Jiangsu Province,China(Nos.BK20220687 and BK20201470)the National Natural Science Foundation of China(Nos.U1933202 and 12372079)The support provided by China Scholarship Council(No.201606830028)during the visit of Xin LI at the University of Toronto is also acknowledged and appreciated.
文摘Detection and repair of composite damage is crucial to ensure the safety and reliability of aircraft structures.A novel approach to quantitatively evaluate the repair tolerance of composite structures in civil aircraft based on Bayesian updating is presented.The method incorporates historical damage inspection data to determine the prior distribution of damage size,which is then updated with newly collected damage size data using Bayesian theory.Monte Carlo simulation is employed to investigate the probability of failure and estimate maintenance costs,considering various factors such as the frequency and timing of damage events,damage detection,structural strength,gust loads,and maintenance expenses throughout the lifecycle of composite structures.Safety and economic factors are considered to establish a lower threshold for repairs and an upper threshold for maintenance based on the occurrence of accidental impact damage.Verification of the effectiveness and feasibility of a quantitative assessment method for repair tolerance is conducted using damage statistics data from civil aircraft routes utilizing the structural skin panels of composite outer wing.The results demonstrate that the method proposed in conjunction with extensive simulations and full utilization of field damage inspection data can effectively simulate unexpected impact damage situations that may occur during civil aircraft service and evaluate the reliability and economic feasibility of the repair of structure.The research findings hold significant theoretical and practical value for the preparation of documents for continued airworthiness of composite structures,including structural repair manuals and maintenance programs.