Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
由于飞机驾驶舱处于高空太阳辐射的狭小热环境中,现有的人体热舒适性评价指标无法准确评价其热舒适性。本文从人体热平衡方程出发,对人体热舒适性预测平均评价(PMV)指标中的辐射换热项进行了修正,提出了一种适用于飞机驾驶舱内部热舒适...由于飞机驾驶舱处于高空太阳辐射的狭小热环境中,现有的人体热舒适性评价指标无法准确评价其热舒适性。本文从人体热平衡方程出发,对人体热舒适性预测平均评价(PMV)指标中的辐射换热项进行了修正,提出了一种适用于飞机驾驶舱内部热舒适性评价的指标PMV_F(PMV for Fighter)。同时,采用雷诺平均Navier-Stokes(RANS)方法对驾驶舱内部气流组织进行了数值计算,并对其热舒适性进行了分析。计算结果与实验数据吻合较好,基于PMV_F指标的计算结果能够反映驾驶舱内飞行员的热舒适状况,表明该方法可以用于飞机驾驶舱的热舒适性设计与评价。展开更多
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
文摘由于飞机驾驶舱处于高空太阳辐射的狭小热环境中,现有的人体热舒适性评价指标无法准确评价其热舒适性。本文从人体热平衡方程出发,对人体热舒适性预测平均评价(PMV)指标中的辐射换热项进行了修正,提出了一种适用于飞机驾驶舱内部热舒适性评价的指标PMV_F(PMV for Fighter)。同时,采用雷诺平均Navier-Stokes(RANS)方法对驾驶舱内部气流组织进行了数值计算,并对其热舒适性进行了分析。计算结果与实验数据吻合较好,基于PMV_F指标的计算结果能够反映驾驶舱内飞行员的热舒适状况,表明该方法可以用于飞机驾驶舱的热舒适性设计与评价。