Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for nume...Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.展开更多
The effects of restricting petterns of rectangular aerostatic guideway, restricitng orifce, spread of restricting orifices, size of air cavity and making tiny groove on the air foating surface etc, on the function of ...The effects of restricting petterns of rectangular aerostatic guideway, restricitng orifce, spread of restricting orifices, size of air cavity and making tiny groove on the air foating surface etc, on the function of aerostatic guideway are analyzed by applying the method of finite element. This also provides a theoretical evidence for the design of rectangular guideways. The non-linear pressure equation set of finite element are sovled by using Newton metehod which guarantees quick and satisfactory convergence, high precision computation and wide range of applications.展开更多
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot...An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.展开更多
基金the National Natural Science Foundation of China (11202215 and 11332011)the Youth Innovation Promotion Association of CAS (2015015)
文摘Fluid-structure interaction is an important issue for non-rigid airships with inflated envelopes. In this study, a wind tunnel test is conducted, and a loosely coupled procedure is correspondingly established for numerical simulation based on computational fluid dynamics and nonlinear finite element analysis methods. The typical results of the numerical simulation and wind tunnel experiment, including the overall lift and deformation, are in good agreement with each other. The results obtained indicate that the effect of fluid-structure interaction is noticeable and should be considered for non-rigid airships. Flow- induced deformation can further intensify the upward lift force and pitching moment, which can lead to a large deformation. Under a wind speed of 15 m/s, the lift force of the non-rigid model is increased to approximatelv 60% compared with that of the rigid model under a high angle of attack.
文摘The effects of restricting petterns of rectangular aerostatic guideway, restricitng orifce, spread of restricting orifices, size of air cavity and making tiny groove on the air foating surface etc, on the function of aerostatic guideway are analyzed by applying the method of finite element. This also provides a theoretical evidence for the design of rectangular guideways. The non-linear pressure equation set of finite element are sovled by using Newton metehod which guarantees quick and satisfactory convergence, high precision computation and wide range of applications.
文摘An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.