Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has bee...Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has been extensively researched,comprehensive multi-parameter studies on ice accretion for intake structures remain insufficient.This investigation examines the icing characteristics of the air shroud,a critical component of marine gas turbines,resulting from saltwater droplet freezing.The study utilized a custom-built cyclic ice wind tunnel,with flow field quality verified through Five-hole probe and Hot wire anemometer methods,and droplet field quality validated using Laser,Flowmeter,Ice blade,and Icing calibration grid techniques.The research analyzes ice distribution and thickness on the shroud under varying NaCl concentrations,considering temperature,liquid water content(LWC),and median volume diameter(MVD).The findings reveal that decreased salinity facilitates rime ice formation,resulting in rough ice texture.Temperature reduction,increased LWC,and larger MVD enhanced salinity's influence on ice thickness.The shroud exhibits substantial radial ice accretion,with coverage extending to approximately 90%.These results establish a foundation for further investigation of saltwater icing mechanisms and pioneer icing research in marine gas turbine intake systems.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U2241270)China Postdoctoral Science Foundation(Grant No.2025M774341)+1 种基金the Heilongjiang Province Postdoctoral Special Funding Project(Grant No.LBHTZ2408)the Outstanding Doctoral Dissertation Funding Project of Heilongjiang in the New Era(Grant No.LJYXL2024-007)。
文摘Polar ships face significant risks from ice accretion on decks,superstructures,and power systems.Ice formation on the power intake system particularly affects vessel stability and safety.While freshwater icing has been extensively researched,comprehensive multi-parameter studies on ice accretion for intake structures remain insufficient.This investigation examines the icing characteristics of the air shroud,a critical component of marine gas turbines,resulting from saltwater droplet freezing.The study utilized a custom-built cyclic ice wind tunnel,with flow field quality verified through Five-hole probe and Hot wire anemometer methods,and droplet field quality validated using Laser,Flowmeter,Ice blade,and Icing calibration grid techniques.The research analyzes ice distribution and thickness on the shroud under varying NaCl concentrations,considering temperature,liquid water content(LWC),and median volume diameter(MVD).The findings reveal that decreased salinity facilitates rime ice formation,resulting in rough ice texture.Temperature reduction,increased LWC,and larger MVD enhanced salinity's influence on ice thickness.The shroud exhibits substantial radial ice accretion,with coverage extending to approximately 90%.These results establish a foundation for further investigation of saltwater icing mechanisms and pioneer icing research in marine gas turbine intake systems.