针对在信号交叉口前由于车辆转向和换道操作频繁容易引发冲突、降低通行效率的问题,构建基于深度强化学习(DQN)的车辆群体控制模型,优化车辆车道选择.首先,利用传感器和网联设备等获取周围车辆及交叉口信号灯实时状态信息,基于共享DQN...针对在信号交叉口前由于车辆转向和换道操作频繁容易引发冲突、降低通行效率的问题,构建基于深度强化学习(DQN)的车辆群体控制模型,优化车辆车道选择.首先,利用传感器和网联设备等获取周围车辆及交叉口信号灯实时状态信息,基于共享DQN模型进行车道选择,并根据该结果计算下一时刻位置、速度和转向角;进一步以效率及安全性指标建立奖励函数对车道选择决策实施评价,将状态信息、决策信息及奖励评价信息整合形成经验,存入同一经验池用于共享DQN模型参数迭代更新;最后,使用SUMO(simulation of urban mobility)与Python联合仿真搭建不同交通流量环境对训练后的模型进行验证.研究表明:相较于SUMO中的车道选择模型,基于共享DQN模型的信号交叉口前车辆群体车道选择模型,在低、中、高流量测试场景的平均速度均有提高,交叉口前排队长度分别减少了9.6%、22.5%和24.8%.本文模型可以有效减少信号交叉口的排队长度、提高信号交叉口前的路段平均速度、增强车辆从上游到达交叉口的效率,为未来车路协同的应用提供理论借鉴和技术支持.展开更多
以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形...以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形成对比。其次,基于寻路理论通过建筑信息建模(building information modeling,BIM)+虚拟现实(virtual reality,VR)仿真技术,实现人与枢纽的信息交互,提取新旧导向标识方案作用下乘客寻路过程的特征参数。最后,通过对寻路实验中主客观指标分析可知,被试在新版动态导向标识方案中寻路时间、犯错误点数及迷茫点数显著降低,且新版动态导向标识方案在内容、样式及空间位置上满意度均优于旧版。结果表明:研究搭建BIM+VR的虚拟仿真平台,形成以数据驱动为导向的枢纽动态导向标识方案综合评估及优化设计方法,为枢纽动态导向标识方案设计及合理应用提供技术与理论支撑。展开更多
针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货...针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货物的运输数量。设计混合遗传算法进行求解,引入扰动策略以提高搜索效率,并通过实验选取合适的参数。探讨了平均日需求量与车辆载重量的比值、单位库存持有成本对需求拆分策略及总配送成本的影响。多组算例试验表明,本文提出的模型和算法可有效解决该问题。当需求量服从正态分布且平均日需求量为车辆载重量的55%时,采用需求拆分策略的效果最佳。本研究拓展了库存路径问题的相关理论,既可为解决MIRPSD问题提供一种新思路,也可为物流企业的相关决策提供理论依据。展开更多
文摘针对在信号交叉口前由于车辆转向和换道操作频繁容易引发冲突、降低通行效率的问题,构建基于深度强化学习(DQN)的车辆群体控制模型,优化车辆车道选择.首先,利用传感器和网联设备等获取周围车辆及交叉口信号灯实时状态信息,基于共享DQN模型进行车道选择,并根据该结果计算下一时刻位置、速度和转向角;进一步以效率及安全性指标建立奖励函数对车道选择决策实施评价,将状态信息、决策信息及奖励评价信息整合形成经验,存入同一经验池用于共享DQN模型参数迭代更新;最后,使用SUMO(simulation of urban mobility)与Python联合仿真搭建不同交通流量环境对训练后的模型进行验证.研究表明:相较于SUMO中的车道选择模型,基于共享DQN模型的信号交叉口前车辆群体车道选择模型,在低、中、高流量测试场景的平均速度均有提高,交叉口前排队长度分别减少了9.6%、22.5%和24.8%.本文模型可以有效减少信号交叉口的排队长度、提高信号交叉口前的路段平均速度、增强车辆从上游到达交叉口的效率,为未来车路协同的应用提供理论借鉴和技术支持.
文摘以北京市四惠枢纽为研究对象,探索以数据驱动为导向满足乘客需求的枢纽动态导向标识方案评估及优化设计方法。首先,搭建KANO乘客需求模型,通过桌面实验,形成动态导向标识在内容、样式及空间位置上的优化设计方案,与四惠枢纽现有方案形成对比。其次,基于寻路理论通过建筑信息建模(building information modeling,BIM)+虚拟现实(virtual reality,VR)仿真技术,实现人与枢纽的信息交互,提取新旧导向标识方案作用下乘客寻路过程的特征参数。最后,通过对寻路实验中主客观指标分析可知,被试在新版动态导向标识方案中寻路时间、犯错误点数及迷茫点数显著降低,且新版动态导向标识方案在内容、样式及空间位置上满意度均优于旧版。结果表明:研究搭建BIM+VR的虚拟仿真平台,形成以数据驱动为导向的枢纽动态导向标识方案综合评估及优化设计方法,为枢纽动态导向标识方案设计及合理应用提供技术与理论支撑。
文摘针对需求可拆分的多品种库存路径问题(multi-product inventory routing problem with split deliveries,MIRPSD),提出一种基于最小化库存持有成本、运输成本和车辆使用总成本的车辆路径优化模型。同时考虑每个客户的交货计划及每种货物的运输数量。设计混合遗传算法进行求解,引入扰动策略以提高搜索效率,并通过实验选取合适的参数。探讨了平均日需求量与车辆载重量的比值、单位库存持有成本对需求拆分策略及总配送成本的影响。多组算例试验表明,本文提出的模型和算法可有效解决该问题。当需求量服从正态分布且平均日需求量为车辆载重量的55%时,采用需求拆分策略的效果最佳。本研究拓展了库存路径问题的相关理论,既可为解决MIRPSD问题提供一种新思路,也可为物流企业的相关决策提供理论依据。