In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
为了得到简单可靠的清扫车举升油缸支架结构,建立了以体积分数(Volume Fraction)为约束条件、以结构加权应变能(Weighted Compliance)为目标函数的变密度法(Variable Density Method)拓扑优化数学模型,利用线性近似的方法,分析了采用复...为了得到简单可靠的清扫车举升油缸支架结构,建立了以体积分数(Volume Fraction)为约束条件、以结构加权应变能(Weighted Compliance)为目标函数的变密度法(Variable Density Method)拓扑优化数学模型,利用线性近似的方法,分析了采用复合式垃圾箱的道路清扫车在倾倒垃圾过程中油缸支架的受力状况,确定了举升起始工况和检修工况作为设计油缸支架的主要受力工况.采用变密度法对油缸支架进行了拓扑优化设计.在考虑制造工艺可靠性的前提下,以拓扑优化结果为基础建立了清扫车举升油缸支架的三维模型,并进行了线性静态分析.结果表明,基于变密度法设计的清扫车举升油缸支架结构简单,占用空间小,最大应力与最大应变均处于合理范围,满足使用要求.展开更多
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
文摘为了得到简单可靠的清扫车举升油缸支架结构,建立了以体积分数(Volume Fraction)为约束条件、以结构加权应变能(Weighted Compliance)为目标函数的变密度法(Variable Density Method)拓扑优化数学模型,利用线性近似的方法,分析了采用复合式垃圾箱的道路清扫车在倾倒垃圾过程中油缸支架的受力状况,确定了举升起始工况和检修工况作为设计油缸支架的主要受力工况.采用变密度法对油缸支架进行了拓扑优化设计.在考虑制造工艺可靠性的前提下,以拓扑优化结果为基础建立了清扫车举升油缸支架的三维模型,并进行了线性静态分析.结果表明,基于变密度法设计的清扫车举升油缸支架结构简单,占用空间小,最大应力与最大应变均处于合理范围,满足使用要求.