The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter i...The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.展开更多
Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure...Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.展开更多
Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is st...Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is still blank. In view of this, cutting test and fatigue crack growth test of YT05 cemented carbide cutting tool are conducted to measure such data as the original crack size, growth size, times of impact loading, number and time of cutting tool in failure, and stress distribution of cutting tool is also obtained by simulating cutting process of tools. Mathematical models on dynamic reliability and dynamic reliability sensitivity of cutting tool are derived respectively by taking machining time and times of impact loading into account, thus change rules of dynamic reliability sensitivity to physical and material parameters can be obtained. Theoretical and experimental results show that sensitive degree on each parameter of tools increases gradually with the increase of machining time and times of impact loading, especially for parameters such as fracture toughness, shape parameter, and cutting stress. This proposed model solves such problems as how to determine the most sensitive parameter and influence degree of physical parameters and material parameters to reliability, which is sensitivity, and can provide theoretical foundation for improving reliability of cutting tool system.展开更多
The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used ...The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used to analyze the reliability and the RS. In the presented models, the truncated CNV is transformed to general CNV, and the value domains of the truncated CNV are treated as multiple failure modes, then the reliability and the RS with the truncated CNV are transformed to the general cases, on which an e^cient radial based sampling is used to analyze the trans- formed reliability and RS. An adaptive strategy is employed to search for the optimal radial in the sampling, by which the robustness of the method is improved. After the model concepts and the detailed implementation are given, several examples are presented to demonstrate the feasibility of the model and the efficiency of the solutions.展开更多
基金Foundation items: National Natural Science Foundation of China (NSFC 10572117, 10802063, 50875213) National High-tech Research and Development Program (2007AA04Z401)+2 种基金 Aeronautical Science Foundation of China (2007ZA53012) New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868) Ph.D. Program Foundation of Northwestern Polytechnical University (CX200801).
文摘The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.
基金National Natural Science Foundation of China (10572117,10802063,50875213)Aeronautical Science Foundation of China (2007ZA53012)+1 种基金New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868)National High-tech Research and Development Program (2007AA04Z401)
文摘Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.
基金supported by National Natural Science Foundation of China(Grant Nos.51105068,51305071)Fundamental Research Funds for the Central Universities of China(Grant No.N120203001)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110042120017)
文摘Influence of geometric and cutting parameters of cemented carbide cutting tool on reliability of cutting tool has become more and more mature, yet influence of its physical and material parameters on reliability is still blank. In view of this, cutting test and fatigue crack growth test of YT05 cemented carbide cutting tool are conducted to measure such data as the original crack size, growth size, times of impact loading, number and time of cutting tool in failure, and stress distribution of cutting tool is also obtained by simulating cutting process of tools. Mathematical models on dynamic reliability and dynamic reliability sensitivity of cutting tool are derived respectively by taking machining time and times of impact loading into account, thus change rules of dynamic reliability sensitivity to physical and material parameters can be obtained. Theoretical and experimental results show that sensitive degree on each parameter of tools increases gradually with the increase of machining time and times of impact loading, especially for parameters such as fracture toughness, shape parameter, and cutting stress. This proposed model solves such problems as how to determine the most sensitive parameter and influence degree of physical parameters and material parameters to reliability, which is sensitivity, and can provide theoretical foundation for improving reliability of cutting tool system.
基金support of the Natural Science Foundation of China (NSFC10572117and 50875213)Aviation Science Foundation(2007ZA53012)863 Project (2007AA04Z401)
文摘The reliability and reliability sensitivity ( RS ) models are presented for the engineering problem involving truncated correlated normal variables (CNV), and in the case an adaptive radial based sampling is used to analyze the reliability and the RS. In the presented models, the truncated CNV is transformed to general CNV, and the value domains of the truncated CNV are treated as multiple failure modes, then the reliability and the RS with the truncated CNV are transformed to the general cases, on which an e^cient radial based sampling is used to analyze the trans- formed reliability and RS. An adaptive strategy is employed to search for the optimal radial in the sampling, by which the robustness of the method is improved. After the model concepts and the detailed implementation are given, several examples are presented to demonstrate the feasibility of the model and the efficiency of the solutions.