为了分析新型动力集中动车组通过不同隧道的车辆平稳性变化规律,文章利用动力学仿真软件建立了9编组动车组动力学模型,并且考虑了气动载荷对车体结构的作用,仿真计算了列车以不同运行方式、速度在直线线路上通过42 m 2和52 m 2断面隧道...为了分析新型动力集中动车组通过不同隧道的车辆平稳性变化规律,文章利用动力学仿真软件建立了9编组动车组动力学模型,并且考虑了气动载荷对车体结构的作用,仿真计算了列车以不同运行方式、速度在直线线路上通过42 m 2和52 m 2断面隧道的平稳性。计算结果显示,列车高速通过小断面隧道工况,尾车的横向平稳性出现明显的恶化。基于这一现象,文章通过在列车动力学仿真模型中每节车辆的车端连接部位设置纵向车间减振器,研究车间减振器对车辆隧道通过时平稳性的影响。结果表明,在顶推运行方式下,加装车间减振器后,列车通过2种隧道断面的平稳性均为优级,而在牵引运行方式下,还存在部分车辆平稳性等级为良好。整体来说,加装车间减振器对列车的平稳性及舒适度具有一定的提升效果。展开更多
文摘为了分析新型动力集中动车组通过不同隧道的车辆平稳性变化规律,文章利用动力学仿真软件建立了9编组动车组动力学模型,并且考虑了气动载荷对车体结构的作用,仿真计算了列车以不同运行方式、速度在直线线路上通过42 m 2和52 m 2断面隧道的平稳性。计算结果显示,列车高速通过小断面隧道工况,尾车的横向平稳性出现明显的恶化。基于这一现象,文章通过在列车动力学仿真模型中每节车辆的车端连接部位设置纵向车间减振器,研究车间减振器对车辆隧道通过时平稳性的影响。结果表明,在顶推运行方式下,加装车间减振器后,列车通过2种隧道断面的平稳性均为优级,而在牵引运行方式下,还存在部分车辆平稳性等级为良好。整体来说,加装车间减振器对列车的平稳性及舒适度具有一定的提升效果。