The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the r...The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.展开更多
Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transpo...Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transportation processes.Energy efficiency of ETNs is defined as the amount of power losses in ETN components:overhead catenary systems and traction transformers.Due to the instability of traction loads and changes in their location in space,the electric traction network is different from the general network.It is necessary to develop an approach for loss analysis in traction networks and in transformers of traction substations.To solve this prob-lem,a balance-based technique for power loss calculation in traction networks based on ASCAPC data is proposed.First,the balance-based technique presented here breaks down the power consumption of the train by source.Then,calculates technical power losses in 25 and 225 kV traction networks as well as in traction transformers.Last,the technique is implemented in the form of an algorithm tested on real-life data and it is ready for practical use.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.52277126.
文摘The integration of a large number of power electronic converters,such as railway power conditioner(RPC),introduces a series of problems,including harmonic interaction,stability issues,and wideband resonance,into the railway power supply system.To address these challenges,this paper proposes a novel harmonic resonance prevention measure for RPC-network-train interaction system.Firstly,a harmonic model,a parallel resonance impedance model,a series resonance admittance model,and a control stability model are each established for the RPC-network-train interaction system.Secondly,a comprehensive resonance impact factor(CRIF)is proposed to efficiently and accurately identify the key components affecting resonance,and to provide the selection results of optimization parameters for resonance prevention.Next,the initially selected parameters are constrained by the requirements of ripple current,reactive power and stability.Subsequently,the impedance parameters(control parameters and filter parameters)of the RPC are optimized with the objective of reshaping the parallel resonance impedance and series resonance admittance of the RPC-network-train interaction system,ensuring the output current har-monics of RPC meet standards to achieve resonance prevention,while ensuring the stable operation of the RPC.Finally,the proposed resonance prevention measure is verified under both light load and heavy load conditions using a simulation platform and a hardware-in-the-loop experimental platform.
基金the state assign-ment of Ministry of Science and Higher Education of the Russian Federation(theme No 123102000012-2“Compre-hensive study of aerodynamic characteristics of plasma systems of thermochemical fuel preparation”,agreement No 075-03-2023-028/1 of 05.10.2023).
文摘Modern electric traction networks(ETN)are equipped with automated systems for commercial accounting of power consumption(ASCAPC),which allows solving properly the problems of enhancing the energy efficiency of transportation processes.Energy efficiency of ETNs is defined as the amount of power losses in ETN components:overhead catenary systems and traction transformers.Due to the instability of traction loads and changes in their location in space,the electric traction network is different from the general network.It is necessary to develop an approach for loss analysis in traction networks and in transformers of traction substations.To solve this prob-lem,a balance-based technique for power loss calculation in traction networks based on ASCAPC data is proposed.First,the balance-based technique presented here breaks down the power consumption of the train by source.Then,calculates technical power losses in 25 and 225 kV traction networks as well as in traction transformers.Last,the technique is implemented in the form of an algorithm tested on real-life data and it is ready for practical use.