Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solu...Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing.However,realizing the facile production of a protective textile that combines safety and comfort remains a challenge.Herein,we report the fabrication of highly permeable protective textiles(HPPT)with micro/nano-networks,using non-solvent induced phase separation synergistically driven by CaCl_(2) and fluorinated polyurethane,combined with spraying technique.The HPPT demonstrates excellent liquid repellency and comfort,ensuring high safety and a dry microenvironment for the wearer.The textile exhibits not only a high hydrostatic pressure(12.86 kPa)due to its tailored small mean pore size(1.03μm)and chemical composition,but also demonstrates excellent air permeability(14.24 mm s^(−1))and moisture permeability(7.92 kg m^(−2)d^(−1))owing to the rational combination of small pore size and high porosity(69%).The HPPT offers superior comfort compared to the commercially available protective materials.Additionally,we elucidated a molding mechanism synergistically inducted by diffusion-dissolution-phase separation.This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.展开更多
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
基金the Fundamental Research Funds for the Central Universities(No.2232023Y-01)the National Natural Science Foundation of China(Nos.52073052)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(No.CUSF-DH-D-2023015).
文摘Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing.However,realizing the facile production of a protective textile that combines safety and comfort remains a challenge.Herein,we report the fabrication of highly permeable protective textiles(HPPT)with micro/nano-networks,using non-solvent induced phase separation synergistically driven by CaCl_(2) and fluorinated polyurethane,combined with spraying technique.The HPPT demonstrates excellent liquid repellency and comfort,ensuring high safety and a dry microenvironment for the wearer.The textile exhibits not only a high hydrostatic pressure(12.86 kPa)due to its tailored small mean pore size(1.03μm)and chemical composition,but also demonstrates excellent air permeability(14.24 mm s^(−1))and moisture permeability(7.92 kg m^(−2)d^(−1))owing to the rational combination of small pore size and high porosity(69%).The HPPT offers superior comfort compared to the commercially available protective materials.Additionally,we elucidated a molding mechanism synergistically inducted by diffusion-dissolution-phase separation.This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.