期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进MobileNetV2的烟丝种类识别
1
作者
王莉
朱雯路
+3 位作者
范磊
胡宏帅
袁强
牛群峰
《中国农机化学报》
北大核心
2025年第8期58-65,共8页
为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计...
为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计分类器以降低网络深度;结合知识蒸馏技术使用迁移学习后的ResNet50网络对改进后的MobileNetV2网络进行学习指导以实现模型轻量化。试验结果表明,基于改进MobileNetV2的烟丝种类识别方法对各类烟丝的识别准确率为95.37%,比基础网络提高8.6%;参数量为0.62 M,比基础网络减少1.61 M。同时,与传统的分类网络(GoogLeNet、AlexNet、ResNet50、VGG16)相比,烟丝识别准确率更高、计算量更小。
展开更多
关键词
烟丝识别
深度学习
卷积神经网络
知识蒸馏
轻量化
在线阅读
下载PDF
职称材料
题名
基于改进MobileNetV2的烟丝种类识别
1
作者
王莉
朱雯路
范磊
胡宏帅
袁强
牛群峰
机构
河南工业大学电气工程学院
河南中烟工业有限责任公司许昌卷烟厂
出处
《中国农机化学报》
北大核心
2025年第8期58-65,共8页
基金
河南工业大学创新基金支持计划专项资助(2022ZKCJ03)
河南省重大公益专项(201300210100)。
文摘
为解决烟丝形态小且不同种类烟丝之间差异小、难以识别的问题,提出一种基于改进MobileNetV2的烟丝种类识别方法。以MobileNetV2为基础网络,引入多尺度特征融合模块以获取丰富的烟丝细节信息;删除主干网络中过多的bottleneck和重新设计分类器以降低网络深度;结合知识蒸馏技术使用迁移学习后的ResNet50网络对改进后的MobileNetV2网络进行学习指导以实现模型轻量化。试验结果表明,基于改进MobileNetV2的烟丝种类识别方法对各类烟丝的识别准确率为95.37%,比基础网络提高8.6%;参数量为0.62 M,比基础网络减少1.61 M。同时,与传统的分类网络(GoogLeNet、AlexNet、ResNet50、VGG16)相比,烟丝识别准确率更高、计算量更小。
关键词
烟丝识别
深度学习
卷积神经网络
知识蒸馏
轻量化
Keywords
tobacco strands identification
deep learning
convolutional neural network
knowledge distillation
lightweight
分类号
TS493 [农业科学—烟草工业]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进MobileNetV2的烟丝种类识别
王莉
朱雯路
范磊
胡宏帅
袁强
牛群峰
《中国农机化学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部