The conversion of waste resources into fertilizer represents a crucial strategy for optimizing waste utilization and attaining"carbon peak and neutrality"objectives.This approach not only effectively mitigat...The conversion of waste resources into fertilizer represents a crucial strategy for optimizing waste utilization and attaining"carbon peak and neutrality"objectives.This approach not only effectively mitigates greenhouse gas emissions but also enhances the organic matter content in soil,thereby supporting the advancement of sustainable agriculture.Currently,the principal fertilizer production technologies utilizing solid waste resources encompass hydrothermal fertilizer production,aerobic fermentation,wrapping fertilizer production,micro-storage fertilizer production,and biochemical rapid decomposition.This paper examines the applicability and limitations of these technologies in practical contexts,and anticipates their developmental trends and future prospects.It aims to offer practical guidance and constructive support for the resource utilization of solid waste and the sustainable development of related industries.展开更多
基金Supported by National Undergraduate Training Programs for Innovation and Entrepreneurship(X202510580088)Special Project for Promoting the Coordinated Development of Urban and Rural Areas and Regions by Introducing Scientific and Technological Achievements of Guangdong Province into Counties and Towns(2025B0202010051)Project of High-quality Development in Hundred Counties,Thousands Towns and Ten Thousand Villages of Guangdong Provincial Department of Science and Technology:Key Dispatch Project for Rural Science and Technology Commissioners(KTP20240704).
文摘The conversion of waste resources into fertilizer represents a crucial strategy for optimizing waste utilization and attaining"carbon peak and neutrality"objectives.This approach not only effectively mitigates greenhouse gas emissions but also enhances the organic matter content in soil,thereby supporting the advancement of sustainable agriculture.Currently,the principal fertilizer production technologies utilizing solid waste resources encompass hydrothermal fertilizer production,aerobic fermentation,wrapping fertilizer production,micro-storage fertilizer production,and biochemical rapid decomposition.This paper examines the applicability and limitations of these technologies in practical contexts,and anticipates their developmental trends and future prospects.It aims to offer practical guidance and constructive support for the resource utilization of solid waste and the sustainable development of related industries.