Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex...Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.展开更多
陶质文物是我国文化遗产的重要组成部分,其历史、艺术、科学价值丰富。出土陶质文物多残断,需要使用粘接性能优异的材料对其进行修复保护。本研究以秦东陵土为原料模拟制备陶质文物,以反应型树脂(环氧树脂)、水溶型合成树脂(Primal SF 0...陶质文物是我国文化遗产的重要组成部分,其历史、艺术、科学价值丰富。出土陶质文物多残断,需要使用粘接性能优异的材料对其进行修复保护。本研究以秦东陵土为原料模拟制备陶质文物,以反应型树脂(环氧树脂)、水溶型合成树脂(Primal SF 016)和溶剂型合成树脂(B72)对样品进行粘接,分别在干热、湿热、紫外线辐照和低温等条件下对其进行老化,分析老化前后样品的微观形貌、化学键、力学性能等,从而对三种材料的耐老化性能进行综合评价。结果表明:环氧树脂综合性能最佳,具有良好的抗热、抗湿和抗冻性能,但耐紫外光照射性能差,适用于室内环境中的陶质文物修复;Primal SF 016耐热性能良好,但容易受高湿、低温和紫外光照射的影响,适用于室内干燥环境;B72的性能与Primal SF 016相近,但综合耐老化性能更优,适用于室内陶质文物修复。展开更多
基金We would like to show gratitude to the Yunnan Province Basic Research Major Project(202501BC070006(Y.Wang))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY ZNT2024002(Y.Wang))+3 种基金National Natural Science Foundation of China(22279070(L.Wang))and(U21A20170(X.He))the Ministry of Science and Technology of China(2019YFA0705703(L.Wang))Beijing Natural Science Foundation(L242005(X.He))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY BSPY2024011(T.Lai)).
文摘Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.
文摘陶质文物是我国文化遗产的重要组成部分,其历史、艺术、科学价值丰富。出土陶质文物多残断,需要使用粘接性能优异的材料对其进行修复保护。本研究以秦东陵土为原料模拟制备陶质文物,以反应型树脂(环氧树脂)、水溶型合成树脂(Primal SF 016)和溶剂型合成树脂(B72)对样品进行粘接,分别在干热、湿热、紫外线辐照和低温等条件下对其进行老化,分析老化前后样品的微观形貌、化学键、力学性能等,从而对三种材料的耐老化性能进行综合评价。结果表明:环氧树脂综合性能最佳,具有良好的抗热、抗湿和抗冻性能,但耐紫外光照射性能差,适用于室内环境中的陶质文物修复;Primal SF 016耐热性能良好,但容易受高湿、低温和紫外光照射的影响,适用于室内干燥环境;B72的性能与Primal SF 016相近,但综合耐老化性能更优,适用于室内陶质文物修复。